1
|
Sun ZB, Li L, Ma GQ, Chen Y, Jia DZ, Li XJ, Li Y, Lei J, Zhong GJ, Li ZM. Robust, Fully Biodegradable Films of Polyesters Realized by In Situ Formation of an Interconnected Multi-Nanolayer Structure under Extensional Flow. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38867-38877. [PMID: 37542460 DOI: 10.1021/acsami.3c08265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
Multilayer structures are not only applied to manipulate properties of synthetic polymer materials such as rainbow films and barrier films but also widely discovered in natural materials like nacre. In this work, in situ formation of an interconnected multi-nanolayer (IMN) structure in poly(butylene adipate-co-terephthalate) (PBAT)/poly(butylene succinate) (PBS) cocontinuous blends is designed by an extensional flow field during a "casting-thermal stretching" process, combining the properties of two components to a large extent. Hierarchical structures including phase morphology, crystal structure, and lamellar crystals in IMN films have been revealed, which clearly identifies the crucial role of extensional flow. The oriented PBAT phase in the IMN structure can be beneficial to the epitaxial growth of PBS crystals onto the PBAT nanolayers, thus improving interfacial adhesions. Furthermore, intense extensional stress can also promote crystallinity and thicken the lamellar structure. Given such distinct features in the fully biodegradable films, a simultaneous enhancement in tear strength, tensile strength, and puncture resistance has been achieved. To the best of our knowledge, the tear strength of IMN films about 285.9 kN/m is the highest level in the previous works of this system. Moreover, the proposed fabrication way of the IMN structure is facile and scalable, which is highly expected to be an efficient strategy for development of structured biodegradable polymers with excellent comprehensive properties.
Collapse
Affiliation(s)
- Zhao-Bo Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Lei Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Guo-Qi Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yuan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - De-Zhuang Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu-Juan Li
- Sichuan Engineering Laboratory of Non-Metallic Mineral Powder Modification, Key Laboratory of Solid Waste Treatment & Resource Recycle, Ministry of Education, School of Environment & Resource, Southwest University of Science & Technology, Mianyang 621010, P. R. China
| | - Yue Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jun Lei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
2
|
Wang B, Liu M, Liu J, Tian Y, Liu W, Wu G, Cheng J, Zhang Y, Zhao G, Ni Z. Key Factors of Mechanical Strength and Toughness in Oriented Poly(l-lactic acid) Monofilaments for a Bioresorbable Self-Expanding Stent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13477-13487. [PMID: 36306177 DOI: 10.1021/acs.langmuir.2c01972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The investigation of the strength and toughness of poly(l-lactic acid) (PLLA) monofilaments is essential as the fundamental element of a biodegradable braided stent. However, the determining factor remains poorly addressed with respect to influencing the mechanical behavior of PLLA monofilaments. In this work, the electron beam (EB) with different radiation doses was utilized to sterilize PLLA monofilaments. Properties of the monofilaments, including the breaking strength, elongation at break, molecular weight, orientation, and microstructure of the fracture, were characterized. Results showed that a random chain scission of PLLA resulting from EB during this process could cause the decrease in molecular weight, which led to the decline in breaking strength. Meanwhile, the irradiated monofilaments were found to have almost the same elongation at break below a dose of 30 kGy and declined by 71.41% up to a dose of 48 kGy. It was also found that the ductile fracture connection of the monofilament translated to the brittle fracture by comparing the microstructure without and with sterilization. These phenomena could originate from the destruction of the long molecular chains connecting the crystal plates into shorter ones by radiation. PLLA monofilaments with 0, 30, and 48 kGy were used to braid carotid stents. Compared with a carotid Wallstent, the PLLA stent can better provide radial supporting to the carotid lesion. This study provides preliminary experimental references to evaluate and predict the mechanical performance of PLLA braided stents.
Collapse
Affiliation(s)
- Bin Wang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Muqing Liu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Jinbo Liu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Yuan Tian
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Wentao Liu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing210037, China
| | - Jie Cheng
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Yi Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing210044, China
| | - Gutian Zhao
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Zhonghua Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| |
Collapse
|
3
|
Yin J, Ouyang QF, Sun ZB, Wu FY, Liu Q, Zhang XX, Xu L, Lin H, Zhong GJ, Li ZM. Quantitative Investigation on Structural Evolution of Co-continuous Phase under Shear Flow. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2690-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Meng N, Zeng J, Bian F, Zhong G, Li Z, Sun Z, Wang J. Internal nanostructure and structure-processing relationship of injection molded poly (butylene adipate-co-terephthalate) studied by SAXS-CT. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|