Sharma K, Porat Z, Gedanken A. Designing Natural Polymer-Based Capsules and Spheres for Biomedical Applications-A Review.
Polymers (Basel) 2021;
13:4307. [PMID:
34960858 PMCID:
PMC8708131 DOI:
10.3390/polym13244307]
[Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Natural polymers, such as polysaccharides and polypeptides, are potential candidates to serve as carriers of biomedical cargo. Natural polymer-based carriers, having a core-shell structural configuration, offer ample scope for introducing multifunctional capabilities and enable the simultaneous encapsulation of cargo materials of different physical and chemical properties for their targeted delivery and sustained and stimuli-responsive release. On the other hand, carriers with a porous matrix structure offer larger surface area and lower density, in order to serve as potential platforms for cell culture and tissue regeneration. This review explores the designing of micro- and nano-metric core-shell capsules and porous spheres, based on various functions. Synthesis approaches, mechanisms of formation, general- and function-specific characteristics, challenges, and future perspectives are discussed. Recent advances in protein-based carriers with a porous matrix structure and different core-shell configurations are also presented in detail.
Collapse