1
|
Guo X, Zhang S, Patel S, Sun X, Zhu YL, Wei Z, Wang R, He X, Wang Z, Yu C, Tan SC. A skin-mimicking multifunctional hydrogel via hierarchical, reversible noncovalent interactions. SCIENCE ADVANCES 2025; 11:eadv8523. [PMID: 40378220 PMCID: PMC12083530 DOI: 10.1126/sciadv.adv8523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/15/2025] [Indexed: 05/18/2025]
Abstract
Artificial skin is essential for bionic robotics, facilitating human skin-like functions such as sensation, communication, and protection. However, replicating a skin-matched all-in-one material with excellent mechanical properties, self-healing, adhesion, and multimodal sensing remains a challenge. Herein, we developed a multifunctional hydrogel by establishing a consolidated organic/metal bismuth ion architecture (COMBIA). Benefiting from hierarchical reversible noncovalent interactions, the COMBIA hydrogel exhibits an optimal combination of mechanical and functional properties, particularly its integrated mechanical properties, including unprecedented stretchability, fracture toughness, and resilience. Furthermore, these hydrogels demonstrate superior conductivity, optical transparency, freezing tolerance, adhesion capability, and spontaneous mechanical and electrical self-healing. These unified functions render our hydrogel exceptional properties such as shape adaptability, skin-like perception, and energy harvesting capabilities. To demonstrate its potential applications, an artificial skin using our COMBIA hydrogel was configured for stimulus signal recording, which, as a promising soft electronics platform, could be used for next-generation human-machine interfaces.
Collapse
Affiliation(s)
- Xingkui Guo
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Songlin Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Shubham Patel
- The Grainger College of Engineering, Department of Electrical and Computer Engineering, Department of Materials Science and Engineering, Department of Mechanical Science and Engineering, Departments of Bioengineering, The Grainger College of Engineering, Beckman Institute for Advanced Science and Technology, Materials Research Laboratory, Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiaolu Sun
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Zechang Wei
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Rongguo Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China
- Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, P. R. China
| | - Cunjiang Yu
- The Grainger College of Engineering, Department of Electrical and Computer Engineering, Department of Materials Science and Engineering, Department of Mechanical Science and Engineering, Departments of Bioengineering, The Grainger College of Engineering, Beckman Institute for Advanced Science and Technology, Materials Research Laboratory, Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
2
|
Yang X, Cheng X, Liao S, Chen D, Wei Q. A Self-Healing and Sweat-Chargeable Hydrogel Electrolyte for All-in-One Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49337-49348. [PMID: 39251359 DOI: 10.1021/acsami.4c09054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Flexible solid-state supercapacitors (SCs) with hydrogel as an electrolyte and separator combine the advantages of wearability and energy storage and exhibit a broad application prospect in wearable energy textiles. However, irreversible electrolyte damage and unstable electrode-electrolyte interfaces during mechanical deformations remain bottlenecks in realizing truly wearable applications. Herein, poly(acrylic acid) (PAA)-Fe hydrogels were prepared through a simple thermal polymerization strategy. The dynamic reversible metal coordination bonds between Fe3+ and carboxylic acids confers the hydrogels with excellent self-healing properties. As expected, the prepared hydrogels exhibited superior mechanical strength (tensile stress of 45.80 kPa), ionic conductivity (0.076 S cm-1), and self-healing properties. Subsequently, the SCs were constructed using composite hydrogel electrodes (MnO2@CC embedded in the PAA-Fe hydrogels) as symmetrical electrodes (marked as MSCs). The reversible metal coordination bonds between composite hydrogel electrodes formed an ultrastable electrode/electrolyte interface in the all-in-one MSCs, thus revealing excellent mechanical durability. The all-in-one MSCs delivered a remarkable specific capacitance (30.98 F g-1 at 0.2 A g-1), excellent cyclic stability (87.24% after 5000 cycles), outstanding mechanical deformation stability, and impressive electrochemical output stability after self-healing (capacitance retention of 85.34% after five cycles of cutting/self-healing). It is noteworthy that the all-in-one MSCs employed NaCl as an electrolyte, which can be obtained from human sweat. As a proof of the self-charged concept, the all-in-one MSCs can be reused in sweat, whose capacitance was maintained at 90.05% of the initial state after three repetitions. This work is expected to shine light into the design of all-in-one and fabric-based SCs and the development of wearable energy textiles.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xinyue Cheng
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Shiqin Liao
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Dongsheng Chen
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
3
|
Qin X, Zhao Z, Deng J, Zhao Y, Liang S, Yi Y, Li J, Wei Y. Tough, conductive hydrogels based on gelatin and oxidized sodium carboxymethyl cellulose as flexible sensors. Carbohydr Polym 2024; 335:121920. [PMID: 38616070 DOI: 10.1016/j.carbpol.2024.121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 04/16/2024]
Abstract
Natural polymer-based hydrogels have been wildly used in electronic skin, health monitoring and human motion sensing. However, the construction of hydrogel with excellent mechanical strength and electrical conductivity totally using natural polymers still faces many challenges. In this paper, gelatin and oxidized sodium carboxymethylcellulose were used to synthesize a double-network hydrogel through the dynamic Schiff base bonds. Then, the mechanical strength of the hydrogel was further enhanced by immersing it in an ammonium sulfate solution based on the Hofmeister effect between gelatin and salt. Finally, the gelatin/oxidized sodium carboxymethylcellulose hydrogel exhibited high tensile properties (614 %), tensile fracture strength (2.6 MPa), excellent compressive fracture strength (64 MPa), and compressive toughness (4.28 MJ/m3). Also, the electrical conductivity reached 3.94 S/m. The hydrogel after salt soaked was fabricated as strain sensors, which could accurately monitor the movement of many joints in the human body, such as fingers, wrists, elbows, neck, and throat. Therefore, the designed hydrogel fully originated from natural polymers and has great application potential in motion detection and information recording.
Collapse
Affiliation(s)
- Xuzhe Qin
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, PR China
| | - Zhijie Zhao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, PR China
| | - Jinxuan Deng
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, PR China
| | - Yupeng Zhao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, PR China
| | - Shuhao Liang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, PR China
| | - Yunfeng Yi
- Southeast Hospital of Xiamen University, Zhangzhou 363000, Fujian Province, PR China.
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China.
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, PR China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
4
|
Cai J, Guo J, Wang S. Application of Polymer Hydrogels in the Prevention of Postoperative Adhesion: A Review. Gels 2023; 9:98. [PMID: 36826268 PMCID: PMC9957106 DOI: 10.3390/gels9020098] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Postoperative adhesion is a common post-surgery complication formed between the surface of the body cavity, ranging from a layer of connective tissue to a fibrous bridge containing blood vessels and nerve tissue. Despite achieving a lot of progress, the mechanisms of adhesion formation still need to be further studied. In addition, few current treatments are consistently effective in the prevention of postoperative adhesion. Hydrogel is a kind of water-expanding crosslinked hydrophilic polymer network generated by a simple reaction of one or more monomers. Due to the porous structure, hydrogels can load different drugs and control the drug release kinetics. Evidence from existing studies has confirmed the feasibility and superiority of using hydrogels to counter postoperative adhesions, primarily due to their outstanding antifouling ability. In this review, the current research status of hydrogels as anti-adhesion barriers is summarized, the character of hydrogels in the prevention of postoperative adhesion is briefly introduced, and future research directions are discussed.
Collapse
Affiliation(s)
- Jie Cai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
5
|
Wen X, Wang H, Ren E, Wang S, Xu J. A robust and sensitive flexible strain sensor based on polyurethane cross-linked composite hydrogels for the detection of human motion. NEW J CHEM 2022. [DOI: 10.1039/d2nj03740h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyurethane cross-linked composite hydrogel and wireless Bluetooth module were assembled for the detection of human motion.
Collapse
Affiliation(s)
- Xiao Wen
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Erhui Ren
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shuang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Junhuai Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|