1
|
Gokalp S, Xavierselvan M, Khan MF, Shethia R, Khani S, Riddell RH, Krasnoslobodtseva AV, Mallidi S, Foster M. Liquid metal nanoparticles for enhanced delivery of benzoporphyrin derivative in photodynamic cancer therapy. Photochem Photobiol 2025. [PMID: 40235054 DOI: 10.1111/php.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/17/2025]
Abstract
Photodynamic therapy (PDT) is a targeted cancer treatment offering precise tumor ablation with minimal systemic toxicity. However, its clinical application is constrained by poor solubility, rapid clearance, and inadequate tumor accumulation of photosensitizers (PS). This study presents an innovative liquid metal nanoparticle (LMNP) platform, composed of gallium-indium eutectic alloy (EGaIn), engineered to address these drug delivery challenges in PDT. Using a one-step sonication process, EGaIn nanoparticles are synthesized and functionalized with folic acid (FA) for tumor-specific targeting, beta cyclodextrin (β-CD) for enhanced drug encapsulation, and benzoporphyrin derivative (BPD) as a PS. The inclusion of β-CD significantly improves the BPD loading capacity, achieving a three-fold enhancement (52% vs. 18%) while ensuring nanoparticle stability and sustained drug release. Covalent binding of FA and β-CD to the gallium oxide surface enables effective targeting and biocompatibility. In vitro analyses demonstrate potent PDT efficacy, even with reduced cellular uptake, underscoring the platform's ability to overcome intracellular delivery barriers. This LMNP-based nanoplatform addresses critical PDT limitations, such as suboptimal drug delivery and systemic toxicity, leveraging the unique chemical and physical properties of EGaIn nanoparticles. Its multifunctional design integrates targeted delivery, controlled release, and precise therapeutic activation, representing a promising advancement in the development of effective, personalized cancer treatment strategies.
Collapse
Affiliation(s)
- Sumeyra Gokalp
- Department of Chemistry, University of Massachusetts, Boston, Massachusetts, USA
| | - Marvin Xavierselvan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Mohammad Forhad Khan
- Department of Chemistry, University of Massachusetts, Boston, Massachusetts, USA
| | - Ronak Shethia
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Sima Khani
- Department of Chemistry, University of Massachusetts, Boston, Massachusetts, USA
| | - Ryan H Riddell
- Department of Chemistry, University of Massachusetts, Boston, Massachusetts, USA
| | | | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Michelle Foster
- Department of Chemistry, University of Massachusetts, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Wang D, Chen X, Chen S, Wang H, Yang J, He J, Liu X, Zhao Y, Zhang J. Enzyme-activated binary assembly for targeted, controlled delivery of anti-liver cancer compounds. Carbohydr Res 2024; 544:109229. [PMID: 39154417 DOI: 10.1016/j.carres.2024.109229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Liver cancer is the third leading cause of cancer deaths globally. The use of Hydroxycamptothecin (HCPT) as a first-line chemotherapeutic agent for liver, lung, and gastric cancers is often hampered by its low activity, limited targeting, and poor water solubility. This results in a low accumulation of HCPT in tumor cells, as well as the inability to maintain continuous treatment. Consequently, there is an urgent need to develop an accessory method that can enhance the therapeutic efficacy of HCPT while exhibiting good biocompatibility and targeted delivery ability. To address this critical issue, an enzyme-triggered supramolecular nanocarrier, refer as SCD/LCC SNCs, has been successfully developed, leveraging the aggregation of the negatively charged sulfate-modified β-CDs and positively charged lauroylcholine chloride (LCC). This nanocarrier demonstrates acetylcholinesterase (LCC) triggered decomposition behavior, making it a promising drug carrier for HCPT. The cellular assays conducted have demonstrated that HCPT loaded into these SCD/LCC SNCs exhibit reduced cytotoxicity towards normal cells while maintaining robust tumor inhibitory activity and inducing apoptosis. Therefore, this study offers a promising strategy for the effective use of HCPT in the treatment of liver cancer.
Collapse
Affiliation(s)
- Dandan Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Xiangyu Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Shuai Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Hongxia Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Jianmei Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Junnan He
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Xiaoqing Liu
- Shenzhen Kewode Technology Co., Ltd, Shenzhen, 518028, People's Republic of China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China.
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China.
| |
Collapse
|
3
|
Marabada D, Li J, Wei S, Huang Q, Wang Z. Cyclodextrin based nanoparticles for smart drug delivery in colorectal cancer. Chem Biol Drug Des 2023; 102:1618-1631. [PMID: 37705133 DOI: 10.1111/cbdd.14344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
The advancement of colorectal cancer (CRC) prevention, detection, and treatment is essential to ensure that survivors live longer and higher-quality lives. The field of cancer detection and therapy has undergone a revolution with the development of nanotechnology for targeted drug delivery. The significant problems with the delivery of cancer drugs are their solubility, stability, and nonspecific distribution. There is a challenge that the acidic and enzymatic environment in the digestive tract will modify or destroy the medication or the active pharmaceutical ingredient. To overcome the problems, nanoparticles have been widely employed during the past several years to increase the specificity, selectivity, and controlled release of drug delivery systems. The site-specific and targeted delivery leads to reduce toxicity and side effects. With respect to the capability and utilization of cyclodextrin-based nanoparticles in different aspects of the tumour microenvironment and gut microbiota, a survey of current research papers was conducted via looking through databases including GoogleScholar, PubMed, Web of Science, and Scopus. This review aims to summarize cutting-edge nanoparticulate-based technologies and therapies for CRC.
Collapse
Affiliation(s)
- Davies Marabada
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinlei Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shijie Wei
- General Hospital, Ningxia Medical University, Yinchuan, China
| | - Qing Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| | - Zhizhong Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| |
Collapse
|
4
|
Xu J, Chen S, Yang J, Nie Z, He J, Zhao Y, Liu X, Zhang J, Zhao Y. Hyaluronidase-trigger nanocarriers for targeted delivery of anti-liver cancer compound. RSC Adv 2023; 13:11160-11170. [PMID: 37056973 PMCID: PMC10086574 DOI: 10.1039/d3ra00693j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Chemotherapy is recognized as one of the significant treatment methods for liver cancer. The compound celastrol (CSL) could effectively inhibit the proliferation, migration, and invasion of liver cancer cells, which is regarded as a promising candidate to become a mainstream anti-liver cancer drug. However, the application of CSL in liver cancer chemotherapy is limited due to its systemic toxicity, poor water solubility, multidrug resistance, premature degradation, and lack of tumor targeting. Meanwhile, in order to comply with the current concept of precision medicine, precisely targeted delivery of the anti-liver compound CSL was desired. This paper takes into account that liver cancer cells were equipped with hyaluronic acid (HA) receptors (CD44) on their surface and overexpressed. Hyaluronidase (HAase) capable of degrading HA, HAase-responsive nanocarriers (NCs), named HA/(MI)7-β-CD NCs, were prepared based on the electrostatic interaction between HA and imidazole moieties modified β-cyclodextrin (MI)7-β-CD. HA/(MI)7-β-CD NCs showed disassembly properties under HAase stimuli, which was utilized to trap, deliver, and the controllable release of the anti-liver cancer compound CSL. Furthermore, cytotoxicity assay experiments revealed that CSL-trapped HA/(MI)7-β-CD NCs not only reduced cytotoxicity for normal cells but also effectively inhibited the survival for five tumor cells, and even the apoptotic effect of CSL-trapped NCs with a concentration of 5 μg mL-1 on tumor cells (SMMC-7721) was consistent with free CSL. Cell uptake experiments demonstrated HA/(MI)7-β-CD NCs possessed the capability of targeted drug delivery to cancerous cells. HA/(MI)7-β-CD NCs exhibited site-specific and controllable release performance, which is anticipated to proceed further in precision-targeted drug delivery systems.
Collapse
Affiliation(s)
- Junxin Xu
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Siling Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Jianmei Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Zhengquan Nie
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Junnan He
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Yong Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Xiaoqing Liu
- Shenzhen Kewode Technology Co., Ltd Shenzhen 518028 People's Republic of China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| |
Collapse
|
5
|
Li B, Teng J, Chen S, Yang J, Liu X, Zhang J, Zhao Y. A dual‐stimuli responsive supramolecular nanovector anchoring folic acid ligands for targeted delivery of anti‐colorectal drug hydroxycamptothecin. J Appl Polym Sci 2022. [DOI: 10.1002/app.53525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bi‐Lian Li
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming People's Republic of China
| | - Jin‐Kui Teng
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming People's Republic of China
| | - Shuai Chen
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming People's Republic of China
| | - Jian‐Mei Yang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming People's Republic of China
| | - Xiao‐Qing Liu
- Shenzhen Kewode Technology Co., Ltd Shenzhen People's Republic of China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming People's Republic of China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming People's Republic of China
| |
Collapse
|
6
|
Teng J, Yue L, Li B, Yang J, Yang C, Yang T, Zhi X, Liu X, Zhao Y, Zhang J. Synthesis of Cyclodextrin‐based temperature/enzyme‐responsive nanoparticles and application in antitumor drug delivery. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Chen S, Zhu F, Li B, Yang J, Yang T, Liu X, Zhang J, Zhao Y. Alkaline media‐sensitive nanocarrier based on carboxylated cyclodextrin for targeted delivery of anti‐colon drug. J Appl Polym Sci 2022. [DOI: 10.1002/app.53163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuai Chen
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming People's Republic of China
| | - Fang‐Dao Zhu
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming People's Republic of China
| | - Bi‐Lian Li
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming People's Republic of China
| | - Jian‐Mei Yang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming People's Republic of China
| | - Tong Yang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming People's Republic of China
| | - Xiao‐Qing Liu
- Shenzhen Kewode Technology Co., Ltd Shenzhen People's Republic of China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming People's Republic of China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming People's Republic of China
| |
Collapse
|
8
|
Li BL, Wang CL, Wang Q, Yang JM, Chi SM, Chen JC, Zhang J, Zhao Y. β-Cyclodextrin-based supramolecular nanoparticles: pH-sensitive nanocarriers for the sustained release of anti-tumor drugs. NEW J CHEM 2022. [DOI: 10.1039/d2nj02894h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CSL-loaded SBE7-β-CD/HDBAC nanoparticles present pH-trigger controlled release properties, which may enhence the therapeutic effects of the anti-tumor compound CSL.
Collapse
Affiliation(s)
- Bi-Lian Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Chun-Lei Wang
- Kunming No. 24 Middle School, Kunming, 650101, People's Republic of China
| | - Qin Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Jian-Mei Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Shao-Ming Chi
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Jian-Chong Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| |
Collapse
|