1
|
Balasco N, Diaferia C, Rosa E, Monti A, Ruvo M, Doti N, Vitagliano L. A Comprehensive Analysis of the Intrinsic Visible Fluorescence Emitted by Peptide/Protein Amyloid-like Assemblies. Int J Mol Sci 2023; 24:8372. [PMID: 37176084 PMCID: PMC10178990 DOI: 10.3390/ijms24098372] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Amyloid aggregation is a widespread process that involves proteins and peptides with different molecular complexity and amino acid composition. The structural motif (cross-β) underlying this supramolecular organization generates aggregates endowed with special mechanical and spectroscopic properties with huge implications in biomedical and technological fields, including emerging precision medicine. The puzzling ability of these assemblies to emit intrinsic and label-free fluorescence in regions of the electromagnetic spectrum, such as visible and even infrared, usually considered to be forbidden in the polypeptide chain, has attracted interest for its many implications in both basic and applied science. Despite the interest in this phenomenon, the physical basis of its origin is still poorly understood. To gain a global view of the available information on this phenomenon, we here provide an exhaustive survey of the current literature in which original data on this fluorescence have been reported. The emitting systems have been classified in terms of their molecular complexity, amino acid composition, and physical state. Information about the wavelength of the radiation used for the excitation as well as the emission range/peak has also been retrieved. The data collected here provide a picture of the complexity of this multifaceted phenomenon that could be helpful for future studies aimed at defining its structural and electronic basis and/or stimulating new applications.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Department of Chemistry, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Carlo Diaferia
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides “Carlo Pedone”, University of Naples “Federico II”, Via Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.)
| | - Elisabetta Rosa
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides “Carlo Pedone”, University of Naples “Federico II”, Via Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.)
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (M.R.)
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (M.R.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (M.R.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (M.R.)
| |
Collapse
|
2
|
Modulating the poly-L-lysine structure through the control of the protonation-deprotonation state of L-lysine. Sci Rep 2022; 12:19719. [PMID: 36385123 PMCID: PMC9668811 DOI: 10.1038/s41598-022-24109-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Designing the architecture of L-lysine-based polymeric structures is a highly challenging task that requires careful control of the amino acid reactive groups. Conventional processes to obtain branched polylysine need several steps and the addition of specific catalysts. In the present work, to gain a better understanding and control of the formation of L-lysine-based polymers, we have investigated the correlation between the protonation state of L-lysine and the corresponding hydrothermally grown structures. The samples have been characterized by combining optical spectroscopies, such as UV-Vis, fluorescence, and synchrotron radiation circular dichroism with structural analysis by Nuclear Magnetic Resonance, Fourier Transform Infrared spectroscopy, and dynamic light scattering. We have observed that aqueous precursor solutions with alkaline pHs promote the formation of branched structures. In contrast, high pHs favour the reactivity of the ε-amino groups leading to linear structures, as shown by circular dichroism analyses. On the other hand, acidic conditions trigger the branching of the amino acid. Interestingly, the polymeric forms of L-lysine emit in the blue because the increasing number of intermolecular hydrogen bonds promote the intermolecular charge transfer responsible for the emission. Understanding the correlation between the L-lysine charged states and the polymeric structures that could form controlling the protonation-deprotonation states of the amino acid opens the route to a refined design of polypeptide systems based on L-lysine.
Collapse
|
3
|
Wang Q, Molinero-Fernandez A, Casanova A, Titulaer J, Campillo-Brocal JC, Konradsson-Geuken Å, Crespo GA, Cuartero M. Intradermal Glycine Detection with a Wearable Microneedle Biosensor: The First In Vivo Assay. Anal Chem 2022; 94:11856-11864. [PMID: 35979995 PMCID: PMC9434558 DOI: 10.1021/acs.analchem.2c02317] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Glycine (GLY) is gaining importance in medical diagnoses
due to
its relationship with multiple physiological functions. Today, GLY
is exclusively analyzed using instrumentation centralized in clinical
labs, and a tangible point-of-care tool that gathers real-time data
from the patient for effective and fast evaluations is lacking. Relevant
clinical advances are expected as soon as the rapid provision of both
punctual and continuous measurements is possible. In that context,
this work presents a microneedle (MN)-based biosensor for intradermal
GLY detection in interstitial fluid (ISF). The MN tip is externally
tailored to detect GLY levels through the hydrogen peroxide formed
in its reaction with a quinoprotein-based GLY oxidase enzyme. The
analytical performance of the MN biosensor indicates a fast response
time (<7 s); acceptable reversibility, reproducibility, and stability;
as well as a wide linear range of response (25–600 μM)
that covers the physiological levels of GLY in ISF. The MN biosensor
conveniently exhibits high selectivity for GLY over other compounds
commonly found in ISF, and the response is not influenced by temperature,
pH, or skin insertions. Validated intradermal measurements of GLY
were obtained at the in vitro (with pieces of rat skin), ex vivo (on-body
tests of euthanized rats) and in vivo (on-body tests of anesthetized
rats) levels, demonstrating its ability to produce accurate physiological
data. The developed GLY MN biosensor is skin-wearable and provides
reliable, real-time intradermal GLY measurements in ISF by means of
a minimally invasive approach.
Collapse
Affiliation(s)
- Qianyu Wang
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Agueda Molinero-Fernandez
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Ana Casanova
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Joep Titulaer
- Section of Neuropharmacology and Addiction Research, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 05 Uppsala, Sweden
| | - Jonatan C Campillo-Brocal
- Department of Genetics and Microbiology, University of Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Åsa Konradsson-Geuken
- Section of Neuropharmacology and Addiction Research, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 05 Uppsala, Sweden
| | - Gaston A Crespo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Maria Cuartero
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| |
Collapse
|