1
|
He Q, Ning J, Chen H, Jiang Z, Wang J, Chen D, Zhao C, Liu Z, Perepichka IF, Meng H, Huang W. Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries. Chem Soc Rev 2024; 53:7091-7157. [PMID: 38845536 DOI: 10.1039/d4cs00366g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Energy storage devices with high power and energy density are in demand owing to the rapidly growing population, and lithium-ion batteries (LIBs) are promising rechargeable energy storage devices. However, there are many issues associated with the development of electrode materials with a high theoretical capacity, which need to be addressed before their commercialization. Extensive research has focused on the modification and structural design of electrode materials, which are usually expensive and sophisticated. Besides, polymer binders are pivotal components for maintaining the structural integrity and stability of electrodes in LIBs. Polyvinylidene difluoride (PVDF) is a commercial binder with superior electrochemical stability, but its poor adhesion, insufficient mechanical properties, and low electronic and ionic conductivity hinder its wide application as a high-capacity electrode material. In this review, we highlight the recent progress in developing different polymeric materials (based on natural polymers and synthetic non-conductive and electronically conductive polymers) as binders for the anodes and cathodes in LIBs. The influence of the mechanical, adhesion, and self-healing properties as well as electronic and ionic conductivity of polymers on the capacity, capacity retention, rate performance and cycling life of batteries is discussed. Firstly, we analyze the failure mechanisms of binders based on the operation principle of lithium-ion batteries, introducing two models of "interface failure" and "degradation failure". More importantly, we propose several binder parameters applicable to most lithium-ion batteries and systematically consider and summarize the relationships between the chemical structure and properties of the binder at the molecular level. Subsequently, we select silicon and sulfur active electrode materials as examples to discuss the design principles of the binder from a molecular structure point of view. Finally, we present our perspectives on the development directions of binders for next-generation high-energy-density lithium-ion batteries. We hope that this review will guide researchers in the further design of novel efficient binders for lithium-ion batteries at the molecular level, especially for high energy density electrode materials.
Collapse
Affiliation(s)
- Qiang He
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan district, Shenzhen 518055, China.
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Jiaoyi Ning
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Hongming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhixiang Jiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Jianing Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Dinghui Chen
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Changbin Zhao
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan district, Shenzhen 518055, China.
| | - Zhenguo Liu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Igor F Perepichka
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody Street 9, Gliwice 44-100, Poland
- Centre for Organic and Nanohybrid Electronics (CONE), Silesian University of Technology, S. Konarskiego Street 22b, Gliwice 44-100, Poland
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan district, Shenzhen 518055, China.
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
2
|
Wu G, Weng Z, Li J, Zheng Z, Wen Z, Fang W, Zhang Y, Zhang N, Chen G, Liu X. Body Armor-Inspired Double-Wrapped Binder with High Energy Dispersion for a Stable SiO x Anode. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34852-34861. [PMID: 37459587 DOI: 10.1021/acsami.3c05228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The high specific capacity and relatively low volume expansion of silicon suboxide (SiOx) highlight its potential as one of the most promising anode materials for lithium-ion batteries. Nevertheless, the traditional binder of polyacrylic acid (PAA) still cannot adapt to enormous stress during the repeated volume expansion/contraction owing to its intrinsic rigid backbone. Inspired by the "soft and hard composite body armor", we herein design a double-wrapped binder consisting of PAA with a high internal Young's modulus (hard part) and polyurethane (DOU) with a low external Young's modulus (soft part). When the SiOx particle expands during lithiation, the rigid PAA firstly accommodates the volume change to dissipate most of the inner stress, and the elastic DOU with triple dynamic bonds serves as a buffer layer to absorb the residual stress via the breakage/formation of dynamic bonds. By optimizing the PAA/DOU ratio, the SiOx anode can maintain the integrity during long-term cycling and deliver a relatively high reversible capacity of 1064.1 mAh g-1 with a preeminent capacity retention of 83.7% at 0.5C after 300 cycles. Such a double-wrapped binder can provide a novel design strategy for multicomponent functional polymer binders toward high-performance SiOx anodes.
Collapse
Affiliation(s)
- Gang Wu
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Changsha, Hunan 410083, P. R. China
| | - Zheng Weng
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Changsha, Hunan 410083, P. R. China
| | - Jiaqi Li
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Changsha, Hunan 410083, P. R. China
| | - Zhicheng Zheng
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Changsha, Hunan 410083, P. R. China
| | - Zuxin Wen
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Changsha, Hunan 410083, P. R. China
| | - Wenqiang Fang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Changsha, Hunan 410083, P. R. China
| | - Ying Zhang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ning Zhang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Changsha, Hunan 410083, P. R. China
| | - Gen Chen
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Changsha, Hunan 410083, P. R. China
| | - Xiaohe Liu
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Changsha, Hunan 410083, P. R. China
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
3
|
Li J, Yang K, Zheng Y, Gao S, Chai J, Lei X, Zhan Z, Xu Y, Chen M, Liu Z, Guo Q. Water-Soluble Polyamide Acid Binder with Fast Li + Transfer Kinetics for Silicon Suboxide Anodes in Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:30302-30311. [PMID: 37337474 PMCID: PMC10317022 DOI: 10.1021/acsami.3c05103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Silicon suboxide (SiOx) anodes have attracted considerable attention owing to their excellent cycling performance and rate capability compared to silicon (Si) anodes. However, SiOx anodes suffer from high volume expansion similar to Si anodes, which has been a challenge in developing suitable commercial binders. In this study, a water-soluble polyamide acid (WS-PAA) binder with ionic bonds was synthesized. The amide bonds inherent in the WS-PAA binder form a stable hydrogen bond with the SiOx anode and provide sufficient mechanical strength for the prepared electrodes. In addition, the ionic bonds introduced by triethylamine (TEA) induce water solubility and new Li+ transport channels to the binder, achieving enhanced electrochemical properties for the resulting SiOx electrodes, such as cycling and rate capability. The SiOx anode with the WS-PAA binder exhibited a high initial capacity of 1004.7 mAh·g-1 at a current density of 0.8 A·g-1 and a capacity retention of 84.9% after 200 cycles. Therefore, WS-PAA is a promising binder for SiOx anodes compared with CMC and SA.
Collapse
Affiliation(s)
- Jian Li
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
- Hubei
Key Laboratory of Plasma Chemistry and Advanced Materials, School
of Materials Science and Engineering, Wuhan
Institute of Technology, Wuhan 430205, China
| | - Kai Yang
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Yun Zheng
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Shuyu Gao
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Jingchao Chai
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Xiaohua Lei
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Zhuo Zhan
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Yuanjian Xu
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Maige Chen
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Zhihong Liu
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Qingzhong Guo
- Hubei
Key Laboratory of Plasma Chemistry and Advanced Materials, School
of Materials Science and Engineering, Wuhan
Institute of Technology, Wuhan 430205, China
| |
Collapse
|
4
|
Shen H, Wang Q, Chen Z, Rong C, Chao D. Application and Development of Silicon Anode Binders for Lithium-Ion Batteries. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4266. [PMID: 37374450 DOI: 10.3390/ma16124266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
The use of silicon (Si) as a lithium-ion battery's (LIBs) anode active material has been a popular subject of research, due to its high theoretical specific capacity (4200 mAh g-1). However, the volume of Si undergoes a huge expansion (300%) during the charging and discharging process of the battery, resulting in the destruction of the anode's structure and the rapid decay of the battery's energy density, which limits the practical application of Si as the anode active material. Lithium-ion batteries' capacity, lifespan, and safety can be increased through the efficient mitigation of Si volume expansion and the maintenance of the stability of the electrode's structure with the employment of polymer binders. The main degradation mechanism of Si-based anodes and the methods that have been reported to effectively solve the Si volume expansion problem firstly are introduced. Then, the review demonstrates the representative research work on the design and development of new Si-based anode binders to improve the cycling stability of Si-based anode structure from the perspective of binders, and finally concludes by summarizing and outlining the progress of this research direction.
Collapse
Affiliation(s)
- Huilin Shen
- Key Laboratory of High-Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Xiuzheng Road 1788, Changchun 130012, China
| | - Qilin Wang
- Key Laboratory of High-Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Xiuzheng Road 1788, Changchun 130012, China
| | - Zheng Chen
- Key Laboratory of High-Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Xiuzheng Road 1788, Changchun 130012, China
| | - Changru Rong
- National Key Laboratory of Advanced Vehicle Integration and Control, China FAW Group Co., Ltd., Changchun 130013, China
| | - Danming Chao
- Key Laboratory of High-Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Xiuzheng Road 1788, Changchun 130012, China
| |
Collapse
|
5
|
Weng Z, Di S, Chen L, Wu G, Zhang Y, Jia C, Zhang N, Liu X, Chen G. Random Copolymer Hydrogel as Elastic Binder for the SiO x Microparticle Anode in Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42494-42503. [PMID: 36073747 DOI: 10.1021/acsami.2c12128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Silicon suboxides (SiOx) have been widely concerned as a practical anode material for the next-generation lithium-ion batteries due to their relatively high theoretical capacity and lower volume change compared to silicon (Si). Nevertheless, traditional binder poly(vinylidene difluoride) (PVDF) still cannot hold the integrity of the SiOx particle due to its weak van der Waals force. Herein, a copolymer binder for SiOx microparticles is synthesized through a facile method of free radical polymerization between acrylamide (AM) and acrylic acid (AA). By adjusting the mass ratio of the AM/AA monomer, the copolymer binder can generate a covalent-noncovalent network with superior elastic properties from the synergistic effect. During electrochemical testing, the SiOx anode with the optimal copolymer binder (AM/AA = 3:1) delivered a reversible capacity of 734 mAh g-1 (two times that of commercial graphite) at 0.5C after 300 cycles. Thus, this work developed a green and effective strategy for synthesizing a water-soluble binder for Si-based anodes.
Collapse
Affiliation(s)
- Zheng Weng
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Shenghan Di
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Long Chen
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Gang Wu
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Ying Zhang
- Zhongyuan Critical Metals Laboratory and School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Chuankun Jia
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Ning Zhang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Xiaohe Liu
- Zhongyuan Critical Metals Laboratory and School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Gen Chen
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| |
Collapse
|