1
|
Kuddushi M, Xu BB, Malek N, Zhang X. Review of ionic liquid and ionogel-based biomaterials for advanced drug delivery. Adv Colloid Interface Sci 2024; 331:103244. [PMID: 38959813 DOI: 10.1016/j.cis.2024.103244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Ionic liquids (ILs) play a crucial role in the design of novel materials. The ionic nature of ILs provides numerous advantages in drug delivery, acting as a green solvent or active ingredient to enhance the solubility, permeability, and binding efficiency of drugs. They could also function as a structuring agent in the development of nano/micro particles for drug delivery, including micelles, vesicles, gels, emulsion, and more. This review summarize the ILs and IL-based gel structures with their advanced drug delivery applications. The first part of review focuses on the role of ILs in drug formulation and the applications of ILs in drug delivery. The second part of review offers a comprehensive overview of recent drug delivery applications of IL-based gel. It aims to offer new perspectives and attract more attention to open up new avenues in the biomedical applications of ILs and IL-based gels.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Naved Malek
- Ionic Liquid Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 07, India
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| |
Collapse
|
2
|
Li P, Zhou P, Wang J, Wang G. Synthesis, characterization, and property of ionized nano‐objects with defined phase separation. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Penghan Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Peng Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Jian Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| |
Collapse
|
3
|
Yang W, Yan J, Xu P, Chen J, Fang Q, Lin D, Yan Y, Zhang Q. Role of Ionic Concentration and Distribution in Anionic Conductivity: Case Study on a Series of Cobaltocenium-Containing Anion Exchange Membranes with Precise Structure Control. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Weihong Yang
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Jing Yan
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Peng Xu
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Jin Chen
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Qianyi Fang
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Daolei Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yi Yan
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| |
Collapse
|
4
|
Thiol-ene click synthesis of adsorption functionalized poly(ionic liquid)s: influence of the mole fraction of pendant enes. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Durga G, Kalra P, Kumar Verma V, Wangdi K, Mishra A. Ionic liquids: From a solvent for polymeric reactions to the monomers for poly(ionic liquids). J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Khorsand Kheirabad A, Saeedi Garakani S, Tan L, Yuan J. Ferrocene-Containing Porous Poly(Ionic Liquid) Membranes: Synthesis and Application as Sacrificial Template for Porous Iron Oxide Films. Macromol Rapid Commun 2021; 42:e2100077. [PMID: 34061421 DOI: 10.1002/marc.202100077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/21/2021] [Indexed: 11/08/2022]
Abstract
Herein, the fabrication of iron-containing porous polyelectrolyte membranes (PPMs) via ionic complexation between an imidazolium-based poly(ionic liquid) (PIL) and 1,1-ferrocenedicarboxylic acid is reported. The key parameters to control the microstructure of porous hybrid membranes are investigated in detail. Further aerobic pyrolysis of such porous hybrid membranes at 900 °C can transfer the ferrocene-containing PPMs into freestanding porous iron oxide films. This process points out a sacrificial template function of porous poly(ionic liquid) membranes in the fabrication of porous metal oxide films.
Collapse
Affiliation(s)
- Atefeh Khorsand Kheirabad
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, Stockholm, 10691, Sweden
| | - Sadaf Saeedi Garakani
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, Stockholm, 10691, Sweden
| | - Liangxiao Tan
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, Stockholm, 10691, Sweden
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, Stockholm, 10691, Sweden
| |
Collapse
|
7
|
Zheng D, Hua D, Hong Y, Ibrahim AR, Yao A, Pan J, Zhan G. Functions of Ionic Liquids in Preparing Membranes for Liquid Separations: A Review. MEMBRANES 2020; 10:E395. [PMID: 33291472 PMCID: PMC7762167 DOI: 10.3390/membranes10120395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 11/17/2022]
Abstract
Membranes are widely used for liquid separations such as removing solute components from solvents or liquid/liquid separations. Due to negligible vapor pressure, adjustable physical properties, and thermal stability, the application of ionic liquids (ILs) has been extended to fabricating a myriad of membranes for liquid separations. A comprehensive overview of the recent developments in ILs in fabricating membranes for liquid separations is highlighted in this review article. Four major functions of ILs are discussed in detail, including their usage as (i) raw membrane materials, (ii) physical additives, (iii) chemical modifiers, and (iv) solvents. Meanwhile, the applications of IL assisted membranes are discussed, highlighting the issues, challenges, and future perspectives of these IL assisted membranes in liquid separations.
Collapse
Affiliation(s)
- Dayuan Zheng
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Dan Hua
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Yiping Hong
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Abdul-Rauf Ibrahim
- Department of Mechanical Engineering, Faculty of Engineering and Built Environment, Tamale Technical University, Education Ridge Avenue, Sagnarigu District, Tamale, Ghana;
| | - Ayan Yao
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Junyang Pan
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Guowu Zhan
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| |
Collapse
|
8
|
|
9
|
Kim MJ, Yu YG, Chae CG, Seo HB, Lee JS. Facile Synthesis of Amphiphilic Bottlebrush Block Copolymers Bearing Pyridine Pendants via Click Reaction from Protected Alkyne Side Groups. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Myung-Jin Kim
- School of Materials Science and Engineering and Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Yong-Guen Yu
- School of Materials Science and Engineering and Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Chang-Geun Chae
- School of Materials Science and Engineering and Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Ho-Bin Seo
- School of Materials Science and Engineering and Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jae-Suk Lee
- School of Materials Science and Engineering and Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
10
|
Wang A, Liu Z, Xu L, Lou N, Li M, Liu L. Controllable click synthesis of poly(ionic liquid)s by surfactant-free ionic liquid microemulsions for selective dyes reduction. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Yin B, Xu W, Liu C, Kong M, Lv Y, Huang Y, Yang Q, Li G. Synthesis of poly(ionic liquid) for trifunctional epoxy resin with simultaneously enhancing the toughness, thermal and dielectric performances. RSC Adv 2020; 10:2085-2095. [PMID: 35494607 PMCID: PMC9048971 DOI: 10.1039/c9ra10516f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022] Open
Abstract
Poly(ionic liquid) (PIL), integrating the characteristics of both polymers and ionic liquid, is synthesized and employed to modify diglycidyl-4,5-epoxy-cyclohexane-1,2-dicarboxylate (TDE-85). With the addition of PIL, the fracture toughness, and thermal and dielectric performances of TDE-85 were discovered to be simultaneously improved, meanwhile the tensile modulus and strength is increased. Upon an optimal loading of 3 wt% PIL, the critical stress intensity factor (K IC), tensile modulus and strength are raised by 92.9%, 13.3% and 10.7%, respectively. Multi-toughening mechanisms due to spherical domains of PIL formed in TDE-85 during curing are responsible for the improved toughness. Moreover, the dielectric and thermal properties of TDE-85 are also enhanced by adding PIL. With the optimal addition of 5 wt% PIL, the dielectric constant of the composites is enhanced by 62.5%, the glass transition temperature is increased by 16.58 °C and the residual weight of carbon is increased by 59%.
Collapse
Affiliation(s)
- Bingyan Yin
- School of Aeronautics and Astronautics, Sichuan University Chengdu 610065 People's Republic of China
| | - Wenqing Xu
- School of Aeronautics and Astronautics, Sichuan University Chengdu 610065 People's Republic of China
| | - Chengjun Liu
- School of Aeronautics and Astronautics, Sichuan University Chengdu 610065 People's Republic of China
| | - Miqiu Kong
- School of Aeronautics and Astronautics, Sichuan University Chengdu 610065 People's Republic of China
| | - Yadong Lv
- School of Aeronautics and Astronautics, Sichuan University Chengdu 610065 People's Republic of China
| | - Yajiang Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University Chengdu 610065 People's Republic of China
| | - Qi Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University Chengdu 610065 People's Republic of China
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University Chengdu 610065 People's Republic of China
| |
Collapse
|
12
|
Pascual BS, Trigo-López M, Reglero Ruiz JA, Pablos JL, Bertolín JC, Represa C, Cuevas JV, García FC, García JM. Porous aromatic polyamides the easy and green way. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Liu X, Monzavi T, Gitsov I. Controlled ATRP Synthesis of Novel Linear-Dendritic Block Copolymers and Their Directed Self-Assembly in Breath Figure Arrays. Polymers (Basel) 2019; 11:E539. [PMID: 30960523 PMCID: PMC6473431 DOI: 10.3390/polym11030539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/03/2022] Open
Abstract
Herein, we report the formation and characterization of novel amphiphilic linear-dendritic block copolymers (LDBCs) composed of hydrophilic dendritic poly(ether-ester), PEE, blocks and hydrophobic linear poly(styrene), PSt. The LDBCs are synthesized via controlled atom transfer radical polymerization (ATRP) initiated by a PEE macroinitiator. The copolymers formed have narrow molecular mass distributions and are designated as LGn-PSt Mn, in which LG represents the PEE fragment, n denotes the generation of the dendron (n = 1⁻3), and Mn refers to the average molecular mass of the LDBC (Mn = 3.5⁻68 kDa). The obtained LDBCs are utilized to fabricate honeycomb films by a static "breath figure" (BF) technique. The copolymer composition strongly affects the film morphology. LDBCs bearing acetonide dendron end groups produce honeycomb films when the PEE fraction is lower than 20%. Pore uniformity increases as the PEE content decreases. For LDBCs with hydroxyl end groups, only the first generation LDBCs yield BF films, but with a significantly smaller pore size (0.23 μm vs. 1⁻2 μm, respectively). Although higher generation LDBCs with free hydroxyl end groups fail to generate honeycomb films by themselves, the use of a cosolvent or addition of homo PSt leads to BF films with a controllable pore size (3.7⁻0.42 μm), depending on the LDBC content. Palladium complexes within the two triazole groups in each of the dendron's branching moieties can also fine-tune the morphology of the BF films.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, State University of New York⁻College of Environmental Science and Forestry, Syracuse, NY 13210, USA.
| | - Tina Monzavi
- Department of Chemistry, State University of New York⁻College of Environmental Science and Forestry, Syracuse, NY 13210, USA.
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | - Ivan Gitsov
- Department of Chemistry, State University of New York⁻College of Environmental Science and Forestry, Syracuse, NY 13210, USA.
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA.
| |
Collapse
|
14
|
Lin H, Zhang S, Xiao Y, Zhang C, Zhu J, Dunlop JWC, Yuan J. Organic Molecule-Driven Polymeric Actuators. Macromol Rapid Commun 2019; 40:e1800896. [PMID: 30811751 DOI: 10.1002/marc.201800896] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Indexed: 12/11/2022]
Abstract
Inspired by the motions of plant tissues in response to external stimuli, significant attention has been devoted to the development of actuating polymeric materials. In particular, polymeric actuators driven by organic molecules have been designed due to their combined superiorities of tunable functional monomers, designable chemical structures, and variable structural anisotropy. Here, the recent progress is summarized in terms of material synthesis, structure design, polymer-solvent interaction, and actuating performance. In addition, various possibilities for practical applications, including the ability to sense chemical vapors and solvent isomers, and future directions to satisfy the requirement of sensing and smart systems are also highlighted.
Collapse
Affiliation(s)
- Huijuan Lin
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Suyun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yan Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chenjun Zhang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Jixin Zhu
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 210009, China
| | - John W C Dunlop
- Morphophysics Group, Department of the Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 10691, Sweden
| |
Collapse
|
15
|
Frenzel F, Borchert P, Anton AM, Strehmel V, Kremer F. Charge transport and glassy dynamics in polymeric ionic liquids as reflected by their inter- and intramolecular interactions. SOFT MATTER 2019; 15:1605-1618. [PMID: 30672557 DOI: 10.1039/c8sm02135j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polymeric ionic liquids (PILs) form a novel class of materials in which the extraordinary properties of ionic liquids (ILs) are combined with the mechanical stability of polymeric systems qualifying them for multifold applications. In the present study broadband dielectric spectroscopy (BDS), Fourier transform infrared spectroscopy (FTIR), AC-chip calorimetry (ACC) and differential scanning calorimetry (DSC) are combined in order to unravel the interplay between charge transport and glassy dynamics. Three low molecular weight ILs and their polymeric correspondents are studied with systematic variations of anions and cations. For all examined samples charge transport takes place by glassy dynamics assisted hopping conduction. In contrast to low molecular weight ILs the thermal activation of DC conductivity for the polymeric systems changes from a Vogel-Fulcher-Tammann- to an Arrhenius-dependence at a (sample specific) temperature Tσ0. This temperature has been widely discussed to coincide with the glass transition temperature Tg, a refined analysis, instead, reveals Tσ0 of all PILs under study at up to 80 K higher values. In effect, below the Tσ0 charge transport in PILs becomes more efficient - albeit on a much lower level compared to the low molecular weight pendants - indicating conduction paths along the polymer chain. This is corroborated by analysing the temperature dependence of specific IR-active vibrations showing at Tσ0 distinct changes in the spectral position and the oscillator strength, whereas other molecular units are not affected. This leads to the identification of charge transport responsive (CTR) as well as charge transport irresponsive (CTI) moieties and paves the way to a refined molecular understanding of electrical conduction in PILs.
Collapse
Affiliation(s)
- Falk Frenzel
- Leipzig University, Peter Debye Institute for Soft Matter Physics I, Linnéstrasse 5, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
16
|
Nulwala H, Mirjafari A, Zhou X. Ionic liquids and poly(ionic liquid)s for 3D printing – A focused mini-review. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Zhang W, Zhao Q, Yuan J. Porous Polyelectrolytes: The Interplay of Charge and Pores for New Functionalities. Angew Chem Int Ed Engl 2018; 57:6754-6773. [PMID: 29124842 PMCID: PMC6001701 DOI: 10.1002/anie.201710272] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 01/27/2023]
Abstract
The past decade has witnessed rapid advances in porous polyelectrolytes and there is tremendous interest in their synthesis as well as their applications in environmental, energy, biomedicine, and catalysis technologies. Research on porous polyelectrolytes is motivated by the flexible choice of functional organic groups and processing technologies as well as the synergy of the charge and pores spanning length scales from individual polyelectrolyte backbones to their nano-/micro-superstructures. This Review surveys recent progress in porous polyelectrolytes including membranes, particles, scaffolds, and high surface area powders/resins as well as their derivatives. The focus is the interplay between surface chemistry, Columbic interaction, and pore confinement that defines new chemistry and physics in such materials for applications in energy conversion, molecular separation, water purification, sensing/actuation, catalysis, tissue engineering, and nanomedicine.
Collapse
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials ProcessingClarkson UniversityPotsdamNY13699-5814USA
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jiayin Yuan
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials ProcessingClarkson UniversityPotsdamNY13699-5814USA
- Department of Materials and Environmental Chemistry (MMK)Stockholm University10691StockholmSweden
| |
Collapse
|
18
|
Zhang W, Zhao Q, Yuan J. Poröse Polyelektrolyte: Zusammenspiel zwischen Poren und Ladung für neue Funktionen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing; Clarkson University; Potsdam NY 13699-5814 USA
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Jiayin Yuan
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing; Clarkson University; Potsdam NY 13699-5814 USA
- Department of Materials and Environmental Chemistry (MMK); Stockholm University; 10691 Stockholm Schweden
| |
Collapse
|
19
|
Qian W, Texter J, Yan F. Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 2018; 46:1124-1159. [PMID: 28180218 DOI: 10.1039/c6cs00620e] [Citation(s) in RCA: 529] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We review recent works on the synthesis and application of poly(ionic liquid)s (PILs). Novel chemical structures, different synthetic strategies and controllable morphologies are introduced as a supplement to PIL systems already reported. The primary properties determining applications, such as ionic conductivity, aqueous solubility, thermodynamic stability and electrochemical/chemical durability, are discussed. Furthermore, the near-term applications of PILs in multiple fields, such as their use in electrochemical energy materials, stimuli-responsive materials, carbon materials, and antimicrobial materials, in catalysis, in sensors, in absorption and in separation materials, as well as several special-interest applications, are described in detail. We also discuss the limitations of PIL applications, efforts to improve PIL physics, and likely future developments.
Collapse
Affiliation(s)
- Wenjing Qian
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - John Texter
- School of Engineering Technology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
20
|
Yin H, Feng Y, Billon L. Directed Self-Assembly in “Breath Figure” Templating of Melamine-Based Amphiphilic Copolymers: Effect of Hydrophilic End-Chain on Honeycomb Film Formation and Wetting. Chemistry 2017; 24:425-433. [DOI: 10.1002/chem.201704369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Hongyao Yin
- Polymer Research Institute; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 P.R. China
- Institut des Sciences Analytiques et de Physico-Chimie pour; l'Environnement et les Matériaux (IPREM); Université de Pau et des Pays de l'Adour (UPPA), CNRS UMR 5254, Hélioparc; 2 avenue Angot 64053 Pau Cedex 9 France
| | - Yujun Feng
- Polymer Research Institute; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 P.R. China
| | - Laurent Billon
- Institut des Sciences Analytiques et de Physico-Chimie pour; l'Environnement et les Matériaux (IPREM); Université de Pau et des Pays de l'Adour (UPPA), CNRS UMR 5254, Hélioparc; 2 avenue Angot 64053 Pau Cedex 9 France
| |
Collapse
|
21
|
Zhang X, Xu S, Zhou J, Zhao W, Sun S, Zhao C. Anion-Responsive Poly(ionic liquid)s Gating Membranes with Tunable Hydrodynamic Permeability. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32237-32247. [PMID: 28857540 DOI: 10.1021/acsami.7b08740] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Novel anion-responsive "intelligent" membranes with functional gates are fabricated by filling polyethersulfone microporous membranes with poly(ionic liquid)s (PILs) gels. The wetting properties of the PILs could be controlled by changing their counteranions (CAs), and thus, the filled PILs gel gates in the membrane pores could spontaneously switch from the "closed" state to the "open" one by recognizing the hydrophilic CAs in the environment and vice versa. As a result, the fluxes of the "intelligent" membranes could be tuned from a very low level (0 mL/m2·mmHg for Cl-, Br-, and BF4-) to a relatively high one (430 mL/m2·mmHg for TFSI). The anion-responsive gating behavior of the PILs filled membranes is fast, reversible, and reproducible. In addition, the "intelligent" membranes are sensitive to contact time and ion concentrations of the hydrophobic CA species. The proposed anion-responsive "intelligent" membranes are highly attractive for ion-recognizable chemical/biomedical separations and purifications.
Collapse
Affiliation(s)
- Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Sheng Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Jukai Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, People's Republic of China
| |
Collapse
|
22
|
Dani A, Täuber K, Zhang W, Schlaad H, Yuan J. Stable Covalently Photo‐Crosslinked Poly(Ionic Liquid) Membrane with Gradient Pore Size. Macromol Rapid Commun 2017. [DOI: 10.1002/marc.201700167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alessandro Dani
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Karoline Täuber
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Weiyi Zhang
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Helmut Schlaad
- Institute of ChemistryUniversity of Potsdam Karl‐Liebknecht‐Str. 24‐25 14476 Potsdam Germany
| | - Jiayin Yuan
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and Biomolecular Science and Center for Advanced Materials ProcessingClarkson University 8 Clarkson Avenue Potsdam NY 13699 USA
| |
Collapse
|
23
|
|
24
|
Wu A, Lu F, Zhao M, Sun N, Shi L, Zheng L. Photo and Humidity Responsive Mesoporous Poly(ionic Liquid) Membrane for Selective Dye Adsorption. ChemistrySelect 2017. [DOI: 10.1002/slct.201601934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aoli Wu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education; Shandong University; Jinan 250100 China
| | - Fei Lu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education; Shandong University; Jinan 250100 China
| | - Mingwei Zhao
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing; China University of Petroleum (East China); Qingdao 266580 China
| | - Na Sun
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education; Shandong University; Jinan 250100 China
| | - Lijuan Shi
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province; Taiyuan University of Technology; Taiyuan 030024 China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education; Shandong University; Jinan 250100 China
| |
Collapse
|
25
|
Täuber K, Dani A, Yuan J. Covalent Cross-Linking of Porous Poly(ionic liquid) Membrane via a Triazine Network. ACS Macro Lett 2017; 6:1-5. [PMID: 35632869 DOI: 10.1021/acsmacrolett.6b00782] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Porous poly(ionic liquid) membranes that were prepared via electrostatic cross-linking were subsequently covalently cross-linked via formation of a 1,3,5-triazine network. The additional covalent cross-links do not affect pore size and pore size distribution of the membranes and stabilize them toward salt solutions of high ionic strength, enabling the membranes to work in a broader environmental window.
Collapse
Affiliation(s)
- Karoline Täuber
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 OT Golm, D-14476 Potsdam, Germany
| | - Alessandro Dani
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 OT Golm, D-14476 Potsdam, Germany
| | - Jiayin Yuan
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 OT Golm, D-14476 Potsdam, Germany
| |
Collapse
|
26
|
Qin L, Wang B, Zhang Y, Chen L, Gao G. Anion exchange: a novel way of preparing hierarchical porous structure in poly(ionic liquid)s. Chem Commun (Camb) 2017; 53:3785-3788. [DOI: 10.1039/c6cc10158e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The exchange of bulky salicylate and its dimers/clusters in PILs by other smaller anions increased specific surface area and fabricated a hierarchical porous structure.
Collapse
Affiliation(s)
- Li Qin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- North Zhongshan Road 3663
- Shanghai 200062
| | - Binshen Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- North Zhongshan Road 3663
- Shanghai 200062
| | - Yongya Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- North Zhongshan Road 3663
- Shanghai 200062
| | - Li Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- North Zhongshan Road 3663
- Shanghai 200062
| | - Guohua Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- North Zhongshan Road 3663
- Shanghai 200062
| |
Collapse
|