1
|
Heng C, Zhou X, Zheng X, Liu M, Wen Y, Huang H, Fan D, Hui J, Zhang X, Wei Y. Surface grafting of rare-earth ions doped hydroxyapatite nanorods (HAp:Ln(Eu/Tb)) with hydrophilic copolymers based on ligand exchange reaction: Biological imaging and cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:556-563. [PMID: 30033287 DOI: 10.1016/j.msec.2018.05.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/09/2017] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
Rare-earth ions doped hydroxyapatite nanoparticles (HAp:Ln NPs) have demonstrated to be very promising candidates for biological imaging applications owing to their small size and chemical compositions similar to bone. However, these HAp:Ln NPs with controllable size and morphology should be prepared under hydrothermal treatment with hydrophobic molecules as the protective layers. The hydrophobic nature of these luminescent HAp:Ln NPs largely impeded their applications in biomedical fields. In this study, a novel and effective strategy has been developed for the surface modification of HAp:Ln nanorods through the combination of surface ligand exchange reaction and reversible-addition fragmentation chain transfer (RAFT) polymerization using 2-methacryloyloxyethyl phosphorylcholine (MPC) and itaconic acid (IA) as the monomers. Herein, a small molecule adenosine 5'-monophosphate disodium salt (AMP) that contains a phosphate group and two hydroxyl groups was used to displace the hydrophobic oleic acid on pristine HAp NPs through surface ligand exchange reaction owing to its stronger interaction with HAp NPs. On the other hand, the MPC and IA were introduced on HAp NPs through RAFT polymerization after the chain transfer agent was immobilized on the HAp NPs through the esterification reaction. The poly(IA-MPC) could not only endow the high water dispersibility but also be used for loading anticancer agent cisplatin (CDDP) through coordination interaction. To evaluate their potential biomedical applications, the cell uptake behavior, drug loading capacity and release behavior as well as cell viability of HAp:Ln-AMP-poly(IA-MPC) polymeric composites were examined. We demonstrated that the method developed in this work is very effective for introduction of functional polymers onto HAp:Ln nanorods. The HAp:Ln-AMP-poly(IA-MPC) composites are promising for cell imaging and controlled delivery of CDDP.
Collapse
Affiliation(s)
- Chunning Heng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China; Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an 710069, PR China
| | - Xin Zhou
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Xiaoyan Zheng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an 710069, PR China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Yuanqing Wen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an 710069, PR China
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an 710069, PR China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China..
| |
Collapse
|
2
|
Guo L, Xu D, Huang L, Liu M, Huang H, Tian J, Jiang R, Wen Y, Zhang X, Wei Y. Facile construction of luminescent supramolecular assemblies with aggregation-induced emission feature through supramolecular polymerization and their biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 85:233-238. [DOI: 10.1016/j.msec.2017.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/11/2017] [Accepted: 12/28/2017] [Indexed: 12/29/2022]
|
3
|
Zeng G, Liu M, Jiang R, Huang Q, Huang L, Wan Q, Dai Y, Wen Y, Zhang X, Wei Y. Self-catalyzed photo-initiated RAFT polymerization for fabrication of fluorescent polymeric nanoparticles with aggregation-induced emission feature. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:154-159. [DOI: 10.1016/j.msec.2017.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 01/19/2023]
|
4
|
Room temperature preparation of fluorescent starch nanoparticles from starch-dopamine conjugates and their biological applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:204-209. [DOI: 10.1016/j.msec.2017.08.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 11/19/2022]
|
5
|
Synthesis and bioimaging of biodegradable red fluorescent organic nanoparticles with aggregation-induced emission characteristics. J Colloid Interface Sci 2017; 508:248-253. [DOI: 10.1016/j.jcis.2017.08.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 01/17/2023]
|
6
|
The one-step acetalization reaction for construction of hyperbranched and biodegradable luminescent polymeric nanoparticles with aggregation-induced emission feature. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:543-548. [DOI: 10.1016/j.msec.2017.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 11/23/2022]
|
7
|
Cao QY, Jiang R, Liu M, Wan Q, Xu D, Tian J, Huang H, Wen Y, Zhang X, Wei Y. Microwave-assisted multicomponent reactions for rapid synthesis of AIE-active fluorescent polymeric nanoparticles by post-polymerization method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:578-583. [DOI: 10.1016/j.msec.2017.07.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 11/29/2022]
|
8
|
Cao QY, Jiang R, Liu M, Wan Q, Xu D, Tian J, Huang H, Wen Y, Zhang X, Wei Y. Preparation of AIE-active fluorescent polymeric nanoparticles through a catalyst-free thiol-yne click reaction for bioimaging applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:411-416. [DOI: 10.1016/j.msec.2017.06.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 05/26/2017] [Accepted: 06/15/2017] [Indexed: 01/25/2023]
|
9
|
Huang H, Xu D, Liu M, Jiang R, Mao L, Huang Q, Wan Q, Wen Y, Zhang X, Wei Y. Direct encapsulation of AIE-active dye with β cyclodextrin terminated polymers: Self-assembly and biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:862-867. [DOI: 10.1016/j.msec.2017.04.080] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 02/09/2023]
|
10
|
Xu D, Liu M, Zou H, Huang Q, Huang H, Tian J, Jiang R, Wen Y, Zhang X, Wei Y. Fabrication of AIE-active fluorescent organic nanoparticles through one-pot supramolecular polymerization and their biological imaging. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Xu D, Liu M, Zou H, Tian J, Huang H, Wan Q, Dai Y, Wen Y, Zhang X, Wei Y. A new strategy for fabrication of water dispersible and biodegradable fluorescent organic nanoparticles with AIE and ESIPT characteristics and their utilization for bioimaging. Talanta 2017; 174:803-808. [PMID: 28738657 DOI: 10.1016/j.talanta.2017.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/14/2017] [Accepted: 07/01/2017] [Indexed: 11/27/2022]
Abstract
Fluorescence probes play a crucial role in optical imaging for visualization of complex biological processes. As compared with conventional organic fluorogens, the probes with aggregation-induced emission (AIE) and excited-state intramolecular proton transfer (ESIPT) characteristics show significant advantages in high quantum yield at concentrated and aggregated state, large Stokes shift and low cytotoxicity. However, the synthesis of AIE-active fluorescent probes through the ESIPT mechanism has received only very limited attention. On the other hand, the preparation of biodegradable fluorescent probes through the ESIPT mechanism has not been demonstrated thus far. In this work, we reported for the first time that water dispersible and biodegradable fluorescent polymeric nanoparticles with AIE and ESIPT characteristics could be facilely obtained through conjugation of 2,4-Dihydroxybenzophenone based benzophenone azine (BPA) and polyethylene glycol (PEG) using hexamethylene diisocyanate. The final copolymers contained hydrophilic and biocompatible PEG and biodegradable urethane linkage are readily self-assembled into core-shell nanostructures. Moreover, the self-assembled BPA-PEG2000 fluorescent organic nanoparticles (FONs) displayed obvious AIE feature, high water dispersibility, superb biocompatibility, biodegradability and excellent cell dyeing performance. All of the above properties implied that BPA-PEG2000 FONs are promising candidates for a variety of biomedical applications.
Collapse
Affiliation(s)
- Dazhuang Xu
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Hui Zou
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Jianwen Tian
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Qing Wan
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Yanfeng Dai
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Yuanqing Wen
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
12
|
Wang Z, Heng L, Jiang L. Wettability with Aggregation-Induced Emission Luminogens. Macromol Rapid Commun 2017; 38. [PMID: 28306167 DOI: 10.1002/marc.201700041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/12/2017] [Indexed: 12/11/2022]
Abstract
Aggregation-induced emission luminogens (AIEgens) have become an emerging field since the concept of AIE was proposed in 2001. Recently, AIEgens have attracted considerable attention due to their abnormal non-emissive fluorescent behavior in solution but strongly emissive behavior in the aggregate state. By utilizing the inherent hydrophobicity, AIEgens can be used to monitor the crystal formation and dewetting behavior in the self-assembly process. More importantly, some stimuli-responsive AIE-active surfaces have been successfully fabricated. In this perspective review, we outline the advances of surface wettability of AIEgens and its applications.
Collapse
Affiliation(s)
- Zubin Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry and Environment, Beihang University, Beijing, 100191, China
| | - Liping Heng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry and Environment, Beihang University, Beijing, 100191, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry and Environment, Beihang University, Beijing, 100191, China
| |
Collapse
|
13
|
Huang L, Liu M, Mao L, Zhang X, Xu D, Wan Q, Huang Q, Shi Y, Deng F, Zhang X, Wei Y. Polymerizable aggregation-induced emission dye for preparation of cross-linkable fluorescent nanoprobes with ultra-low critical micelle concentrations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:586-592. [PMID: 28482567 DOI: 10.1016/j.msec.2017.03.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 11/17/2022]
Abstract
In recent years, aggregation-induced emission (AIE) dyes based fluorescent organic nanoparticles (FONs) have achieved significant progress in various biomedical applications. In this work, we developed a covalent strategy to prepare biocompatible AIE-active dyes based cross-linked copolymers (MPC-POSS-PhE) via controllable reversible addition fragmentation chain transfer (RAFT) polymerization using zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC), polymerizable AIE dye (named as PhE) and 8-vinyl polyoctahedral silsesquioxanes (POSS) as monomers. Due to the existence of hydrophilic MPC and hydrophobic PhE, the resultant copolymers will self-assemble into core-shell nanoparticles in aqueous solution with ultra-low critical micelle concentration (CMC). This could effectively overcome the drawbacks of non-crosslinked micelles and show more attractive properties and better performance for biomedical applications. Furthermore, the characterization results and biological assays demonstrated that the final MPC-POSS-PhE FONs show stable aqueous stability, uniform size and morphology, high water dispersity, desirable optical properties and low cytotoxicity. These remarkable properties make the resultant AIE-active nanoprobes great potential for biomedical applications.
Collapse
Affiliation(s)
- Long Huang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Liucheng Mao
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiqi Zhang
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China
| | - Dazhuang Xu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Qing Wan
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Qiang Huang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yingge Shi
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
14
|
Liu M, Gao P, Wan Q, Deng F, Wei Y, Zhang X. Recent Advances and Future Prospects of Aggregation-induced Emission Carbohydrate Polymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600575] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/25/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Meiying Liu
- Department of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Peng Gao
- Department of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Qing Wan
- Department of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Fengjie Deng
- Department of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research; Tsinghua University; Beijing 100084 P. R. China
| | - Xiaoyong Zhang
- Department of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| |
Collapse
|
15
|
Wan Q, Xu D, Mao L, He Z, Zeng G, Shi Y, Deng F, Liu M, Zhang X, Wei Y. Facile Fabrication of AIE-Active Fluorescent Polymeric Nanoparticles with Ultra-Low Critical Micelle Concentration Based on Ce(IV) Redox Polymerization for Biological Imaging Applications. Macromol Rapid Commun 2017; 38. [PMID: 28221732 DOI: 10.1002/marc.201600752] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/10/2017] [Indexed: 12/30/2022]
Abstract
Fluorescent polymeric nanoparticles (FPNs) with aggregation-induced emission (AIE) property have received increasing attention and possess promising biomedical application potential in the recent years. Many efforts have been devoted to the fabrication methodologies of FPNs and significant advance has been achieved. In this contribution, a novel strategy for the fabrication of AIE-active amphiphilic copolymers is reported for the first time based on the Ce(IV) redox polymerization. As an example, ene group containing AIE-active dye (named as Phe-alc) is directly grafted onto a water soluble polymer polyethylene glycol (PEG) in H2 O/THF system under low temperature. Thus-obtained amphiphilic fluorescent polymers will self-assemble into FPNs with ultra-low critical micelle concentration, ultra-brightness, and great water dispersibility. Biological evaluation results suggest that the PEG-poly(Phe-alc) possess excellent biocompatibility and can be used for tracing their behavior in cells using confocal laser scanning microscope. These features make PEG-poly(Phe-alc) FPNs promising candidates for many biomedical applications, such as cell imaging, drug delivery vehicles, and targeted tracing. More importantly, many other functional groups can also be incorporated into these AIE-active FPNs through the redox polymerization. Therefore, the redox polymerization should be a facile and effective strategy for fabrication of AIE-active FPNs.
Collapse
Affiliation(s)
- Qing Wan
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Dazhuang Xu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Liucheng Mao
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Ziyang He
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Guangjian Zeng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Yingge Shi
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
16
|
Yuan W, Chi W, Liu R, Li H, Li Y, Tang BZ. Synthesis of Poly(phenyltriazolylcarboxylate)s with Aggregation-Induced Emission Characteristics by Metal-Free 1,3-Dipolar Polycycloaddition of Phenylpropiolate and Azides. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600745] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/15/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Wei Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Weiwen Chi
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Ruimin Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Hongkun Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Yongfang Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Ben Zhong Tang
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
| |
Collapse
|
17
|
Shi Y, Liu M, Deng F, Zeng G, Wan Q, Zhang X, Wei Y. Recent progress and development on polymeric nanomaterials for photothermal therapy: a brief overview. J Mater Chem B 2017; 5:194-206. [DOI: 10.1039/c6tb02249a] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review article summarizes the recent development and progress of polymeric photothermal agents for photothermal therapy and imaging-guided photothermal therapy applications.
Collapse
Affiliation(s)
- Yingge Shi
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Meiying Liu
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Fengjie Deng
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Guangjian Zeng
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Qing Wan
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Xiaoyong Zhang
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- P. R. China
| |
Collapse
|