1
|
Lv H, Wu B, Song J, Wu W, Cai W, Xu J. Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions. J Mater Chem B 2021; 9:6536-6552. [PMID: 34324619 DOI: 10.1039/d1tb01005k] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intrauterine adhesions (IUAs) are caused by damage to the underlying lining of the endometrium. They' re related to disorder of endometrial repair. In recent years, hydrogels with controllable biological activity have been widely used for treating IUAs. They encapsulate estrogen, cytokines, cells, or exosomes, forming a delivery system to release therapeutic components for the treatment of IUAs. In addition, the hydrogel acting as a barrier can be degraded in the body automatically, reducing the risk of infection caused by secondary surgeries. In this review, we summarize the recent progress of hydrogels and their application in IUAs as both a novel alternative therapeutic and an artificial delivery strategy.
Collapse
Affiliation(s)
- Houyi Lv
- Department of Reproductive Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
2
|
Hydrogel Properties and Their Impact on Regenerative Medicine and Tissue Engineering. Molecules 2020; 25:molecules25245795. [PMID: 33302592 PMCID: PMC7764781 DOI: 10.3390/molecules25245795] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogels (HGs), as three-dimensional structures, are widely used in modern medicine, including regenerative medicine. The use of HGs in wound treatment and tissue engineering is a rapidly developing sector of medicine. The unique properties of HGs allow researchers to easily modify them to maximize their potential. Herein, we describe the physicochemical properties of HGs, which determine their subsequent applications in regenerative medicine and tissue engineering. Examples of chemical modifications of HGs and their applications are described based on the latest scientific reports.
Collapse
|
3
|
Li YF, Li Z, Lin Q, Yang YW. Functional supramolecular gels based on pillar[n]arene macrocycles. NANOSCALE 2020; 12:2180-2200. [PMID: 31916548 DOI: 10.1039/c9nr09532b] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular gels constructed from low-molecular-weight gelators via noncovalent interactions have received increasing attention. The rapid development of stimuli-responsive supramolecular gels with attractive properties is highly desirable to meet the ever-growing demand of materials science and chemistry. The inherent reversible and dynamic nature of noncovalent interactions in supramolecular gels endows the materials with sensing, processing, and actuating functions in response to specific environmental changes and offers them great potential in flexible biomaterials and intelligent devices. In particular, pillar[n]arenes with symmetrical pillar-shaped architectures have been recognized as an emerging class of synthetic macrocycles after crown ethers, cyclodextrins, calixarenes, and cucurbiturils, and proven to be excellent candidates for the fabrication of functional supramolecular gels due to their many advantages including facile synthesis, diverse functionalization, and appealing host-guest properties. This review provides a comprehensive overview of recent progress in supramolecular gels involving pillar[n]arenes and their derivatives as synthetic macrocyclic arenes, from the viewpoints of the synthetic approach, controllable assembly, stimuli-responsiveness, and functions. Perspectives of this burgeoning field of research are also given at the end.
Collapse
Affiliation(s)
- Yong-Fu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Zheng Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China. and The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
4
|
Oliver S, Zhao L, Gormley AJ, Chapman R, Boyer C. Living in the Fast Lane—High Throughput Controlled/Living Radical Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01864] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | - Adam J. Gormley
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | | | | |
Collapse
|
5
|
Judzewitsch PR, Nguyen T, Shanmugam S, Wong EHH, Boyer C. Towards Sequence‐Controlled Antimicrobial Polymers: Effect of Polymer Block Order on Antimicrobial Activity. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Peter R. Judzewitsch
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Thuy‐Khanh Nguyen
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Edgar H. H. Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| |
Collapse
|
6
|
Judzewitsch PR, Nguyen T, Shanmugam S, Wong EHH, Boyer C. Towards Sequence‐Controlled Antimicrobial Polymers: Effect of Polymer Block Order on Antimicrobial Activity. Angew Chem Int Ed Engl 2018; 57:4559-4564. [DOI: 10.1002/anie.201713036] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/24/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Peter R. Judzewitsch
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Thuy‐Khanh Nguyen
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Edgar H. H. Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| |
Collapse
|
7
|
Biais P, Beaunier P, Stoffelbach F, Rieger J. Loop-stabilized BAB triblock copolymer morphologies by PISA in water. Polym Chem 2018. [DOI: 10.1039/c8py00914g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Assemblies of BAB triblock copolymers are prepared by PISA via aqueous RAFT dispersion polymerization. The importance of charges in the middle of the hydrophilic stabilizer loops is highlighted.
Collapse
Affiliation(s)
- Pauline Biais
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- 75252 Paris Cedex 05
| | - Patricia Beaunier
- Sorbonne Université
- CNRS
- UMR 7197
- Laboratoire de Réactivité de Surface (LRS)
- 75252 Paris Cedex 05
| | - François Stoffelbach
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- 75252 Paris Cedex 05
| | - Jutta Rieger
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- 75252 Paris Cedex 05
| |
Collapse
|
8
|
Çakir S, Bauters E, Rivero G, Parasote T, Paul J, Du Prez FE. High-Throughput Platform for Synthesis of Melamine-Formaldehyde Microcapsules. ACS COMBINATORIAL SCIENCE 2017; 19:447-454. [PMID: 28574702 DOI: 10.1021/acscombsci.7b00037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of microcapsules via in situ polymerization is a labor-intensive and time-consuming process, where many composition and process factors affect the microcapsule formation and its morphology. Herein, we report a novel combinatorial technique for the preparation of melamine-formaldehyde microcapsules, using a custom-made and automated high-throughput platform (HTP). After performing validation experiments for ensuring the accuracy and reproducibility of the novel platform, a design of experiment study was performed. The influence of different encapsulation parameters was investigated, such as the effect of the surfactant, surfactant type, surfactant concentration and core/shell ratio. As a result, this HTP-platform is suitable to be used for the synthesis of different types of microcapsules in an automated and controlled way, allowing the screening of different reaction parameters in a shorter time compared to the manual synthetic techniques.
Collapse
Affiliation(s)
- Seda Çakir
- Polymer
Chemistry Research Group, Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| | - Erwin Bauters
- FLAMAC, A division of SIM, Technologiepark
903A, 9052 Zwijnaarde, Belgium
| | - Guadalupe Rivero
- Polymer
Chemistry Research Group, Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), J.B. Justo 4302, B7608FDQ, Mar del Plata, Argentina
| | - Tom Parasote
- FLAMAC, A division of SIM, Technologiepark
903A, 9052 Zwijnaarde, Belgium
| | - Johan Paul
- FLAMAC, A division of SIM, Technologiepark
903A, 9052 Zwijnaarde, Belgium
| | - Filip E. Du Prez
- Polymer
Chemistry Research Group, Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Zhang X, Waymouth RM. 1,2-Dithiolane-Derived Dynamic, Covalent Materials: Cooperative Self-Assembly and Reversible Cross-Linking. J Am Chem Soc 2017; 139:3822-3833. [PMID: 28244754 DOI: 10.1021/jacs.7b00039] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of dithiolane-containing polymers to construct responsive and dynamic networks is an attractive strategy in material design. Here, we provide a detailed mechanistic study on the self-assembly and gelation behavior of a class of ABA triblock copolymers containing a central poly(ethylene oxide) block and terminal polycarbonate blocks with pendant 1,2-dithiolane functionalities. In aqueous solution, these amphiphilic block copolymers self-assemble into bridged flower micelles at high concentrations. The addition of a thiol initiates the reversible ring-opening polymerizations of dithiolanes in the micellar cores to induce the cross-linking and gelation of the micellar network. The properties of the resulting hydrogels depend sensitively on the structures of 1,2-dithiolanes. While the methyl asparagusic acid-derived hydrogels are highly dynamic, adaptable, and self-healing, those derived from lipoic acid are rigid, resilient, and brittle. The thermodynamics and kinetics of ring-opening polymerization of the two dithiolanes were investigated to provide important insights on the dramatically different properties of the hydrogels derived from the two different dithiolanes. The incorporation of both dithiolane monomers into the block copolymers provides a facile way to tailor the properties of these hydrogels.
Collapse
Affiliation(s)
- Xiangyi Zhang
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
10
|
Jing M, Fu Y, Fei X, Tian J, Zhi H, Zhang H, Xu L, Wang X, Wang Y. A novel high-strength polymer hydrogel with identifiability prepared via a one-pot method. Polym Chem 2017. [DOI: 10.1039/c7py00563f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A simple one-pot method was developed to fabricate a novel hydrogel with good biocompatibility, excellent mechanical properties, and identifiability via photopolymerization and sol–gel processes.
Collapse
Affiliation(s)
- Muzi Jing
- Instrumental Analysis Center
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
- School of Biological Engineering
| | - Yang Fu
- Harbin stomatological hospital
- Harbin 150000
- P. R. China
| | - Xu Fei
- Instrumental Analysis Center
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Jing Tian
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Hui Zhi
- Instrumental Analysis Center
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
- School of Biological Engineering
| | - Haiyang Zhang
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Longquan Xu
- Instrumental Analysis Center
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Xiuying Wang
- Instrumental Analysis Center
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Yi Wang
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| |
Collapse
|