1
|
Godshall GF, Rau DA, Williams CB, Moore RB. Additive Manufacturing of Poly(phenylene Sulfide) Aerogels via Simultaneous Material Extrusion and Thermally Induced Phase Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307881. [PMID: 38009658 DOI: 10.1002/adma.202307881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Additive manufacturing (AM) of aerogels increases the achievable geometric complexity, and affords fabrication of hierarchically porous structures. In this work, a custom heated material extrusion (MEX) device prints aerogels of poly(phenylene sulfide) (PPS), an engineering thermoplastic, via in situ thermally induced phase separation (TIPS). First, pre-prepared solid gel inks are dissolved at high temperatures in the heated extruder barrel to form a homogeneous polymer solution. Solutions are then extruded onto a room-temperature substrate, where printed roads maintain their bead shape and rapidly solidify via TIPS, thus enabling layer-wise MEX AM. Printed gels are converted to aerogels via postprocessing solvent exchange and freeze-drying. This work explores the effect of ink composition on printed aerogel morphology and thermomechanical properties. Scanning electron microscopy micrographs reveal complex hierarchical microstructures that are compositionally dependent. Printed aerogels demonstrate tailorable porosities (50.0-74.8%) and densities (0.345-0.684 g cm-3), which align well with cast aerogel analogs. Differential scanning calorimetry thermograms indicate printed aerogels are highly crystalline (≈43%), suggesting that printing does not inhibit the solidification process occurring during TIPS (polymer crystallization). Uniaxial compression testing reveals that compositionally dependent microstructure governs aerogel mechanical behavior, with compressive moduli ranging from 33.0 to 106.5 MPa.
Collapse
Affiliation(s)
- Garrett F Godshall
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Daniel A Rau
- Department of Mechanical Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Christopher B Williams
- Department of Mechanical Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Robert B Moore
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
2
|
Siddiqui AM, Thiele F, Stewart RN, Rangnick S, Weiss GJ, Chen BK, Silvernail JL, Strickland T, Nesbitt JJ, Lim K, Schwarzbauer JE, Schwartz J, Yaszemski MJ, Windebank AJ, Madigan NN. Open-Spaced Ridged Hydrogel Scaffolds Containing TiO 2-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury. Int J Mol Sci 2023; 24:10250. [PMID: 37373396 DOI: 10.3390/ijms241210250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The spinal cord has a poor ability to regenerate after an injury, which may be due to cell loss, cyst formation, inflammation, and scarring. A promising approach to treating a spinal cord injury (SCI) is the use of biomaterials. We have developed a novel hydrogel scaffold fabricated from oligo(poly(ethylene glycol) fumarate) (OPF) as a 0.08 mm thick sheet containing polymer ridges and a cell-attractive surface on the other side. When the cells are cultured on OPF via chemical patterning, the cells attach, align, and deposit ECM along the direction of the pattern. Animals implanted with the rolled scaffold sheets had greater hindlimb recovery compared to that of the multichannel scaffold control, which is likely due to the greater number of axons growing across it. The immune cell number (microglia or hemopoietic cells: 50-120 cells/mm2 in all conditions), scarring (5-10% in all conditions), and ECM deposits (Laminin or Fibronectin: approximately 10-20% in all conditions) were equal in all conditions. Overall, the results suggest that the scaffold sheets promote axon outgrowth that can be guided across the scaffold, thereby promoting hindlimb recovery. This study provides a hydrogel scaffold construct that can be used in vitro for cell characterization or in vivo for future neuroprosthetics, devices, or cell and ECM delivery.
Collapse
Affiliation(s)
- Ahad M Siddiqui
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Frederic Thiele
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Program in Human Medicine, Paracelsus Medical Private University, 5020 Salzburg, Austria
| | - Rachel N Stewart
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Simone Rangnick
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Program in Human Medicine, Paracelsus Medical Private University, 5020 Salzburg, Austria
| | - Georgina J Weiss
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Program in Human Medicine, Paracelsus Medical Private University, 90419 Nuremberg, Germany
| | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Tammy Strickland
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, H91 TK33 Galway, Ireland
| | | | - Kelly Lim
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jeffrey Schwartz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
3
|
Calore AR, Srinivas V, Groenendijk L, Serafim A, Stancu IC, Wilbers A, Leoné N, Sanchez AA, Auhl D, Mota C, Bernaerts K, Harings JAW, Moroni L. Manufacturing of scaffolds with interconnected internal open porosity and surface roughness. Acta Biomater 2023; 156:158-176. [PMID: 35868592 DOI: 10.1016/j.actbio.2022.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023]
Abstract
Manufacturing of three-dimensional scaffolds with multiple levels of porosity are an advantage in tissue regeneration approaches to influence cell behavior. Three-dimensional scaffolds with surface roughness and intra-filament open porosity were successfully fabricated by additive manufacturing combined with chemical foaming and porogen leaching without the need of toxic solvents. The decomposition of sodium citrate, a chemical blowing agent, generated pores within the scaffold filaments, which were interconnected and opened to the external environment by leaching of a water-soluble sacrificial phase, as confirmed by micro-CT and buoyancy measurements. The additional porosity did not result in lower elastic modulus, but in higher strain at maximum load, i.e. scaffold ductility. Human mesenchymal stromal cells cultured for 24 h adhered in greater numbers on these scaffolds when compared to plain additive-manufactured ones, irrespectively of the scaffold pre-treatment method. Additionally, they showed a more spread and random morphology, which is known to influence cell fate. Cells cultured for a longer period exhibited enhanced metabolic activity while secreting higher osteogenic markers after 7 days in culture. STATEMENT OF SIGNIFICANCE: Inspired by the function of hierarchical cellular structures in natural materials, this work elucidates the development of scaffolds with multiscale porosity by combining in-situ foaming and additive manufacturing, and successive porogen leaching. The resulting scaffolds displayed enhanced mechanical toughness and multiscale pore network interconnectivity, combined with early differentiation of adult mesenchymal stromal cells into the osteogenic lineage.
Collapse
Affiliation(s)
- Andrea Roberto Calore
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration department, Maastricht University, Maastricht, the Netherlands; Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, the Netherlands
| | - Varun Srinivas
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, the Netherlands
| | - Linda Groenendijk
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, the Netherlands
| | - Andrada Serafim
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Romania
| | | | | | - Nils Leoné
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration department, Maastricht University, Maastricht, the Netherlands
| | - Ane Albillos Sanchez
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration department, Maastricht University, Maastricht, the Netherlands
| | - Dietmar Auhl
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, the Netherlands; Polymerwerkstoffe und -technologien, Technische Universität Berlin, the Netherlands
| | - Carlos Mota
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration department, Maastricht University, Maastricht, the Netherlands
| | - Katrien Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, the Netherlands
| | - Jules A W Harings
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, the Netherlands.
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration department, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
4
|
Wang J, He M, Du M, Zhu C, Jiang Y, Zhuang Y, Qi L, Liu Z, Li Y, Liu L, Feng G, Wang D, Zhang L. Three‐dimensional printing
hydrogel scaffold with bioactivity and shape‐adaptability for potential application in irregular bone defect regeneration. J Appl Polym Sci 2022. [DOI: 10.1002/app.52831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jing Wang
- Analytical and Testing Center Sichuan University Chengdu China
| | - Meiling He
- Analytical and Testing Center Sichuan University Chengdu China
| | - Meixuan Du
- Analytical and Testing Center Sichuan University Chengdu China
| | - Ce Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institute West China Hospital, Sichuan University Chengdu China
| | - Yuling Jiang
- Analytical and Testing Center Sichuan University Chengdu China
| | - Yi Zhuang
- Analytical and Testing Center Sichuan University Chengdu China
| | - Lin Qi
- Analytical and Testing Center Sichuan University Chengdu China
| | - Zheng Liu
- Analytical and Testing Center Sichuan University Chengdu China
| | - Yubao Li
- Analytical and Testing Center Sichuan University Chengdu China
| | - Limin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute West China Hospital, Sichuan University Chengdu China
| | - Ganjun Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute West China Hospital, Sichuan University Chengdu China
| | - Danqing Wang
- Department of Obstetrics and Gynecology West China Second University Hospital, Sichuan University Chengdu China
| | - Li Zhang
- Analytical and Testing Center Sichuan University Chengdu China
| |
Collapse
|
5
|
Camarero‐Espinosa S, Carlos‐Oliveira M, Liu H, Mano JF, Bouvy N, Moroni L. 3D Printed Dual-Porosity Scaffolds: The Combined Effect of Stiffness and Porosity in the Modulation of Macrophage Polarization. Adv Healthc Mater 2022; 11:e2101415. [PMID: 34719861 PMCID: PMC11468864 DOI: 10.1002/adhm.202101415] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/09/2021] [Indexed: 01/04/2023]
Abstract
Tissue regeneration evolves toward the biofabrication of sophisticated 3D scaffolds. However, the success of these will be contingent to their capability to integrate within the host. The control of the mechanical or topographical properties of the implant appears as an ideal method to modulate the immune response. However, the interplay between these properties is yet not clear. Dual-porosity scaffolds with varying mechanical and topographical features are created, and their immunomodulatory properties in rat alveolar macrophages in vitro and in vivo in a rat subcutaneous model are evaluated. Scaffolds are fabricated via additive manufacturing and thermally induced phase separation methods from two copolymers with virtually identical chemistries, but different stiffness. The introduction of porosity enables the modulation of macrophages toward anti-inflammatory phenotypes, with secretion of IL-10 and TGF-β. Soft scaffolds (<5 kPa) result in a pro-inflammatory phenotype in contrast to stiffer (>40 kPa) scaffolds of comparable porosities supporting a pro-healing phenotype, which appears to be related to the surface spread area of cells. In vivo, stiff scaffolds integrate, while softer scaffolds appear encapsulated after three weeks of implantation, resulting in chronic inflammation after six weeks. The results demonstrate the importance of evaluating the interplay between topography and stiffness of candidate scaffolds.
Collapse
Affiliation(s)
- Sandra Camarero‐Espinosa
- MERLN Institute for Technology‐Inspired Regenerative MedicineComplex Tissue Regeneration DepartmentMaastricht UniversityP.O. Box 616Maastricht6200MDThe Netherlands
- POLYMATUniversity of the Basque Country UPV/EHUAvenida Tolosa 72, Donostia/San SebastiánGipuzkoa20018Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - Maria Carlos‐Oliveira
- MERLN Institute for Technology‐Inspired Regenerative MedicineComplex Tissue Regeneration DepartmentMaastricht UniversityP.O. Box 616Maastricht6200MDThe Netherlands
| | - Hong Liu
- Department of General SurgeryMaastricht University Medical CenterP.O. Box 616Maastricht6200MDThe Netherlands
| | - João F. Mano
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Nicole Bouvy
- Department of General SurgeryMaastricht University Medical CenterP.O. Box 616Maastricht6200MDThe Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology‐Inspired Regenerative MedicineComplex Tissue Regeneration DepartmentMaastricht UniversityP.O. Box 616Maastricht6200MDThe Netherlands
| |
Collapse
|
6
|
Iturriaga L, Van Gordon KD, Larrañaga-Jaurrieta G, Camarero‐Espinosa S. Strategies to Introduce Topographical and Structural Cues in 3D‐Printed Scaffolds and Implications in Tissue Regeneration. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Leire Iturriaga
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
| | - Kyle D. Van Gordon
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
| | - Garazi Larrañaga-Jaurrieta
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
| | - Sandra Camarero‐Espinosa
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
- IKERBASQUE Basque Foundation for Science Bilbao 48009 Spain
| |
Collapse
|
7
|
Li J, Chong YT, Teng CP, Liu J, Wang F. Microporosity mediated proliferation of preosteoblast cells on 3D printed bone scaffolds. NANO SELECT 2021. [DOI: 10.1002/nano.202000272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Jian Li
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| | - Yi Ting Chong
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| | - Choon Peng Teng
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| | - Jinyan Liu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products Guangdong Institute of Medical Instruments Guangzhou Guangdong China
| | - FuKe Wang
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| |
Collapse
|
8
|
Yin H, Zhan F, Li Z, Huang H, Marcasuzaa P, Luo X, Feng Y, Billon L. CO 2-Triggered ON/OFF Wettability Switching on Bioinspired Polylactic Acid Porous Films for Controllable Bioadhesion. Biomacromolecules 2021; 22:1721-1729. [PMID: 33666439 DOI: 10.1021/acs.biomac.1c00134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bioinspired honeycomb-like porous films with switchable properties have drawn much attention recently owing to their potential application in scenarios in which the conversion between two opposite properties is required. Herein, the CO2-gas-triggered ON/OFF switching wettability of biocompatible polylactic acid (PLA) honeycomb porous films is fabricated. Highly ordered porous films with diameters between 2.0 and 2.8 μm are separately prepared from complexes of nonresponsive PLA and a CO2-sensitive melamine derivative [N2,N4,N6-tris(3-(dimethylamino)propyl)-1,3,5-triazine-2,4,6-triamine, MET] via the breath figure method. The hydrophilic CO2-sensitive groups can be precisely arranged in the pore's inner surface and/or top surface of the films by simply changing the PLA/MET ratio. The sensitive groups in the pore's inner surface act as a switch triggered by CO2 gas controlling water to enter the pores or not, thus resulting in ON/OFF switching wettability. The largest response of the water contact angle of honeycomb films reaches 35°, from 100 to 65°, leading to an obvious hydrophobic-hydrophilic conversion. The improved surface wettability enhances the interaction between the cell and honeycomb film surface, thus resulting in a better cell attachment. Such smart properties accompanying the biocompatible polymer and biological gas trigger facilitate possible biomedical and bioengineering applications in the future for these films.
Collapse
Affiliation(s)
- Hongyao Yin
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Fuxing Zhan
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zongcheng Li
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Huiyu Huang
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Pierre Marcasuzaa
- Université de Pau & des Pays de l'Adour, E2S UPPA, CNRS, IPREM-UMR 5254, Pau 64000, France.,Bio-Inspired Materials Group: Functionalities and Self-Assembly, Université de Pau & des Pays de l'Adour, E2S UPPA, Pau 64000, France
| | - Xinjie Luo
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yujun Feng
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Laurent Billon
- Université de Pau & des Pays de l'Adour, E2S UPPA, CNRS, IPREM-UMR 5254, Pau 64000, France.,Bio-Inspired Materials Group: Functionalities and Self-Assembly, Université de Pau & des Pays de l'Adour, E2S UPPA, Pau 64000, France
| |
Collapse
|
9
|
Yousefi AM, Powers J, Sampson K, Wood K, Gadola C, Zhang J, James PF. In vitro characterization of hierarchical 3D scaffolds produced by combining additive manufacturing and thermally induced phase separation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2021; 32:454-476. [PMID: 33091329 PMCID: PMC7965350 DOI: 10.1080/09205063.2020.1841535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
This paper reports on the hybrid process we have used for producing hierarchical scaffolds made of poly(lactic-co-glycolic) acid (PLGA) and nanohydroxyapatite (nHA), analyzes their internal structures via scanning electron microscopy, and presents the results of our in vitro proliferation of MC3T3-E1 cells and alkaline phosphatase activity (ALP) for 0 and 21 days. These scaffolds were produced by combining additive manufacturing (AM) and thermally induced phase separation (TIPS) techniques. Slow cooling at a rate of 1.5 °C/min during the TIPS process was used to enable a uniform temperature throughout the scaffolds, and therefore, a relatively uniform pore size range. We produced ten different scaffold compositions and topologies in this study. These scaffolds had macrochannels with diameters of ∼300 µm, ∼380 µm, and ∼460 µm, generated by the extraction of embedded porous 3D-plotted polyethylene glycol (PEG) matrices. The other experimental factors included different TIPS temperatures (-20 °C, -10 °C, and 0 °C), as well as varying PLGA concentrations (8%, 10%, and 12% w/v) and nHA content (0%, 10%, and 20% w/w). Our results indicated that almost all these macro/microporous scaffolds supported cell growth over the period of 21 days. Nevertheless, significant differences were observed among some scaffolds in terms of their support of cell proliferation and differentiation. This paper presents the results of our in vitro cell culture for 0 and 21 days. Our optimal scaffold with a porosity of ∼90%, a modulus of ∼5.2 MPa, and a nHA content of 20% showed a cell adhesion of ∼29% on day 0 and maintained cell proliferation and ALP activity over the 21-day in vitro culture. Hence, the use of additive manufacturing and designed experiments to optimize the scaffold fabrication parameters resulted in superior mechanical properties that most other studies using TIPS.
Collapse
Affiliation(s)
- Azizeh-Mitra Yousefi
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056
| | - Joseph Powers
- Department of Biology, Miami University, Oxford, OH 45056
| | - Kaylie Sampson
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056
| | - Katherine Wood
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056
| | - Carter Gadola
- Department of Biology, Miami University, Oxford, OH 45056
| | - Jing Zhang
- Department of Statistics, Miami University, Oxford, OH 45056
| | - Paul F. James
- Department of Biology, Miami University, Oxford, OH 45056
| |
Collapse
|
10
|
Kuhnt T, Camarero-Espinosa S. Additive manufacturing of nanocellulose based scaffolds for tissue engineering: Beyond a reinforcement filler. Carbohydr Polym 2021; 252:117159. [DOI: 10.1016/j.carbpol.2020.117159] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
|
11
|
Gómez-Cerezo MN, Peña J, Ivanovski S, Arcos D, Vallet-Regí M, Vaquette C. Multiscale porosity in mesoporous bioglass 3D-printed scaffolds for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111706. [PMID: 33545865 DOI: 10.1016/j.msec.2020.111706] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022]
Abstract
In order to increase the bone forming ability of MBG-PCL composite scaffold, microporosity was created in the struts of 3D-printed MBG-PCL scaffolds for the manufacturing of a construct with a multiscale porosity consisting of meso- micro- and macropores. 3D-printing imparted macroporosity while the microporosity was created by porogen removal from the struts, and the MBG particles were responsible for the mesoporosity. The scaffolds were 3D-printed using a mixture of PCL, MBG and phosphate buffered saline (PBS) particles, subsequently leached out. Microporous-PCL (pPCL) as a negative control, microporous MBG-PCL (pMBG-PCL) and non-microporous-MBG-PCL (MBG-PCL) were investigated. Scanning electron microscopy, mercury intrusion porosimetry and micro-computed tomography demonstrated that the PBS removal resulted in the formation of micropores inside the struts with porosity of around 30% for both pPCL and pMBG-PCL, with both constructs displaying an overall porosity of 8090%. In contrast, the MBG-PCL group had a microporosity of 6% and an overall porosity of 70%. Early mineralisation was found in the pMBG-PCL post-leaching out and this resulted in the formation a more homogeneous calcium phosphate layer when using a biomimetic mineralisation assay. Mechanical properties ranged from 5 to 25 MPa for microporous and non-microporous specimens, hence microporosity was the determining factor affecting compressive properties. MC3T3-E1 metabolic activity was increased in the pMBG-PCL along with an increased production of RUNX2. Therefore, the microporosity within a 3D-printed bioceramic composite construct may result in additional physical and biological benefits.
Collapse
Affiliation(s)
| | - Juan Peña
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Herston, QLD, Australia
| | - Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, Herston, QLD, Australia.
| |
Collapse
|
12
|
Abstract
Human bones have unique structures and characteristics, and replacing a natural bone in the case of bone fracture or bone diseases is a very complicated problem. The main goal of this paper was to summarize the recent research on polymer materials as bone substitutes and for bone repair. Bone treatment methods, bone substitute materials as well as their advantages and drawbacks, and manufacturing methods were reviewed. Biopolymers are the most promising materials in the field of artificial bones and using biopolymers with the shape memory effect can improve the integration of an artificial bone into the human body by better mimicking the structure and properties of natural bones, decreasing the invasiveness of surgical procedures by producing deployable implants. It has been shown that the application of the rapid prototyping technology for artificial bones allows the customization of bone substitutes for a patient and the creation of artificial bones with a complex structure.
Collapse
Affiliation(s)
- Anastasiia Kashirina
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology, PO Box 301, No. 92 West Dazhi Street, Harbin 150001, China
| | - Yongtao Yao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, No. 2 YiKuang Street, Harbin 150080, China.
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology, PO Box 301, No. 92 West Dazhi Street, Harbin 150001, China
| | - Jinsong Leng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, No. 2 YiKuang Street, Harbin 150080, China.
| |
Collapse
|
13
|
Nguyen AH, Marsh P, Schmiess-Heine L, Burke PJ, Lee A, Lee J, Cao H. Cardiac tissue engineering: state-of-the-art methods and outlook. J Biol Eng 2019; 13:57. [PMID: 31297148 PMCID: PMC6599291 DOI: 10.1186/s13036-019-0185-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to assess the state-of-the-art fabrication methods, advances in genome editing, and the use of machine learning to shape the prospective growth in cardiac tissue engineering. Those interdisciplinary emerging innovations would move forward basic research in this field and their clinical applications. The long-entrenched challenges in this field could be addressed by novel 3-dimensional (3D) scaffold substrates for cardiomyocyte (CM) growth and maturation. Stem cell-based therapy through genome editing techniques can repair gene mutation, control better maturation of CMs or even reveal its molecular clock. Finally, machine learning and precision control for improvements of the construct fabrication process and optimization in tissue-specific clonal selections with an outlook of cardiac tissue engineering are also presented.
Collapse
Affiliation(s)
- Anh H. Nguyen
- Electrical and Computer Engineering Department, University of Alberta, Edmonton, Alberta Canada
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Paul Marsh
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Lauren Schmiess-Heine
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Peter J. Burke
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Chemical Engineering and Materials Science Department, University of California Irvine, Irvine, CA USA
| | - Abraham Lee
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Mechanical and Aerospace Engineering Department, University of California Irvine, Irvine, CA USA
| | - Juhyun Lee
- Bioengineering Department, University of Texas at Arlington, Arlington, TX USA
| | - Hung Cao
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Henry Samueli School of Engineering, University of California, Irvine, USA
| |
Collapse
|