1
|
Austria ES, Akhavan B. Polymeric nanoparticle synthesis for biomedical applications: advancing from wet chemistry methods to dry plasma technologies. NANOSCALE 2025. [PMID: 40391562 DOI: 10.1039/d5nr00436e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Nanotechnology has introduced a transformative leap in healthcare over recent decades, particularly through nanoparticle-based drug delivery systems. Among these, polymeric nanoparticles (NPs) have gained significant attention due to their tuneable physicochemical properties for overcoming biological barriers. Their surfaces can be engineered with chemical functional groups and biomolecules for a wide range of biomedical applications, ranging from drug delivery to diagnostics. However, despite these advancements, the clinical translation and large-scale commercialization of polymeric NPs face significant challenges. This review uncovers these challenges by examining the interplay between structural design and payload interaction mode. It provides a critical evaluation of the current synthesis methods, beginning with conventional wet chemical techniques, and progressing to emerging dry plasma technologies, such as plasma polymerization. Special attention is given to plasma polymerized nanoparticles (PPNs), highlighting their potential as paradigm-shifting platforms for biomedical applications while identifying key areas for improvement. The review concludes with a forward-looking discussion on strategies to address key challenges, such as achieving regulatory approval and advancing clinical translation of polymeric NP-based therapies, offering unprecedented opportunities for next-generation nanomedicine.
Collapse
Affiliation(s)
- Elmer S Austria
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia.
- Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Behnam Akhavan
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia.
- Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
- School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
2
|
Pashayev E, Georgopanos P. Optimizing the Synthesis of CO 2-Responsive Polymers: A Kinetic Model Approach for Scaling Up. Polymers (Basel) 2025; 17:1115. [PMID: 40284380 PMCID: PMC12031492 DOI: 10.3390/polym17081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
The kinetic model is a crucial tool for optimizing polymer synthesis protocols and facilitating the scaled-up production processes of the CO2-responsive polymer poly(N-[3-(dimethylamino)propyl]-acrylamide)-b-poly(methyl methacrylate)(PDMAPAm-b-PMMA), which is supposed to be implemented in direct air capture (DAC) technology. This study presents a simulation of the kinetic model developed for the Reversible Addition-Fragmentation Chain-Transfer (RAFT) polymerization of N-[3-(dimethylamino)propyl]-acrylamide (DMAPAm), alongside an investigation into the kinetics of this polymerization using the simulation as an analytical tool, as well as the application of the simulation for the upscaling of RAFT polymerization. Ultimately, the kinetic model was validated through two kinetic experiments, confirming its reliability. It was subsequently employed to optimize the synthesis recipe and to predict the properties of PDMAPAm homopolymers, thereby supporting the upscaling of PDMAPAm-b-PMMA diblock copolymer synthesis. In the end, the preliminary results of the CO2-responsiveness of the diblock copolymer were determined with a simple experiment.
Collapse
Affiliation(s)
| | - Prokopios Georgopanos
- Helmholtz-Zentrum Geesthacht, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany;
| |
Collapse
|
3
|
Wilding CP, Knox ST, Bourne RA, Warren NJ. Development and Experimental Validation of a Dispersity Model for In Silico RAFT Polymerization. Macromolecules 2023; 56:1581-1591. [PMID: 36874531 PMCID: PMC9979647 DOI: 10.1021/acs.macromol.2c01798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/20/2023] [Indexed: 02/11/2023]
Abstract
The exploitation of computational techniques to predict the outcome of chemical reactions is becoming commonplace, enabling a reduction in the number of physical experiments required to optimize a reaction. Here, we adapt and combine models for polymerization kinetics and molar mass dispersity as a function of conversion for reversible addition fragmentation chain transfer (RAFT) solution polymerization, including the introduction of a novel expression accounting for termination. A flow reactor operating under isothermal conditions was used to experimentally validate the models for the RAFT polymerization of dimethyl acrylamide with an additional term to accommodate the effect of residence time distribution. Further validation is conducted in a batch reactor, where a previously recorded in situ temperature monitoring provides the ability to model the system under more representative batch conditions, accounting for slow heat transfer and the observed exotherm. The model also shows agreement with several literature examples of the RAFT polymerization of acrylamide and acrylate monomers in batch reactors. In principle, the model not only provides a tool for polymer chemists to estimate ideal conditions for a polymerization, but it can also automatically define the initial parameter space for exploration by computationally controlled reactor platforms provided a reliable estimation of rate constants is available. The model is compiled into an easily accessible application to enable simulation of RAFT polymerization of several monomers.
Collapse
Affiliation(s)
- Clarissa.
Y. P. Wilding
- School
of Chemical and Process Engineering, University
of Leeds, LS2 9JT Leeds, U.K.
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, LS2 9JT Leeds, U.K.
| | - Stephen. T. Knox
- School
of Chemical and Process Engineering, University
of Leeds, LS2 9JT Leeds, U.K.
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, LS2 9JT Leeds, U.K.
| | - Richard. A. Bourne
- School
of Chemical and Process Engineering, University
of Leeds, LS2 9JT Leeds, U.K.
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, LS2 9JT Leeds, U.K.
| | - Nicholas. J. Warren
- School
of Chemical and Process Engineering, University
of Leeds, LS2 9JT Leeds, U.K.
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, LS2 9JT Leeds, U.K.
| |
Collapse
|
4
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Monteferrante M, Tiribocchi A, Succi S, Pisignano D, Lauricella M. Capturing Free-Radical Polymerization by Synergetic Ab Initio Calculations and Topological Reactive Molecular Dynamics. Macromolecules 2022; 55:1474-1486. [PMID: 35287293 PMCID: PMC8909409 DOI: 10.1021/acs.macromol.1c01408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/08/2021] [Indexed: 11/30/2022]
Abstract
Photocurable polymers are used ubiquitously in 3D printing, coatings, adhesives, and composite fillers. In the present work, the free radical polymerization of photocurable compounds is studied using reactive classical molecular dynamics combined with a dynamical approach of the nonequilibrium molecular dynamics (D-NEMD). Different concentrations of radicals and reaction velocities are considered. The mechanical properties of the polymer resulting from 1,6-hexanediol dimethacrylate systems are characterized in terms of viscosity, diffusion constant, and activation energy, whereas the topological ones through the number of cycles (polymer loops) and cyclomatic complexity. Effects like volume shrinkage and delaying of the gel point for increasing monomer concentration are also predicted, as well as the stress-strain curve and Young's modulus. Combining ab initio, reactive molecular dynamics, and the D-NEMD method might lead to a novel and powerful tool to describe photopolymerization processes and to original routes to optimize additive manufacturing methods relying on photosensitive macromolecular systems.
Collapse
Affiliation(s)
| | - Adriano Tiribocchi
- Istituto
per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Sauro Succi
- Istituto
per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy
- Center
for Life Nano Science@La Sapienza, Istituto
Italiano di Tecnologia, Viale Regina Elena, 291, 00161 Rome, Italy
| | - Dario Pisignano
- Dipartimento
di Fisica, Università di Pisa, Largo B. Pontecorvo 16 3, 56127 Pisa, Italy
- NEST,
Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy
| | - Marco Lauricella
- Istituto
per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy
| |
Collapse
|
6
|
Synthesis of Biobased Block Copolymers Using A Novel Methacrylated Methyl Salicylate and Poly(3‐Hydroxybutyrate). ChemistrySelect 2021. [DOI: 10.1002/slct.202102977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Edeleva M, Marien YW, Van Steenberge PHM, D'hooge DR. Impact of side reactions on molar mass distribution, unsaturation level and branching density in solution free radical polymerization of n-butyl acrylate under well-defined lab-scale reactor conditions. Polym Chem 2021. [DOI: 10.1039/d1py00151e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The paper describes the influence of side reactions in isothermal solution free-radical polymerization of n-butyl acrylate accounting for chain-length dependent diffusional limitations on termination.
Collapse
Affiliation(s)
- Mariya Edeleva
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Ghent
- Belgium
| | - Yoshi W. Marien
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Ghent
- Belgium
| | | | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Ghent
- Belgium
- Centre for Textile Science and Engineering (CTSE)
| |
Collapse
|
8
|
Bolshchikov BD, Tsvetkov VB, Alikhanova OL, Serbin AV. How to Fight Kinetics in Complex Radical Polymerization Processes: Theoretical Case Study of Poly(divinyl ether‐alt‐maleic anhydride). MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Boris D. Bolshchikov
- Polyelectrolytes and Biomedical Polymers Laboratory A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky prospect, 29 Moscow 119991 Russia
| | - Vladimir B. Tsvetkov
- Polyelectrolytes and Biomedical Polymers Laboratory A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky prospect, 29 Moscow 119991 Russia
- Department of Molecular VirologyFSBI Research Institute of Influenza Ministry of Health of the Russian Federation Professor Popov Street 15/17 Saint Petersburg 197376 Russia
- Federal Research and Clinical Centre of Physical‐Chemical Medicine Federal Medical Biological Agency Malaya Pirogovskaya 1a Moscow 119435 Russia
- Computational Oncology Group I.M. Sechenov First Moscow State Medical University Trubetskaya Str. 8‐2 119991 Moscow Russia
| | - Olga L. Alikhanova
- Polyelectrolytes and Biomedical Polymers Laboratory A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky prospect, 29 Moscow 119991 Russia
- Research Center for Biomodulators and Drugs Health Research and Development Foundation Admiral Ushakov Boulevard 14–209 Moscow 117042 Russia
| | - Alexander V. Serbin
- Polyelectrolytes and Biomedical Polymers Laboratory A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky prospect, 29 Moscow 119991 Russia
- Research Center for Biomodulators and Drugs Health Research and Development Foundation Admiral Ushakov Boulevard 14–209 Moscow 117042 Russia
| |
Collapse
|
9
|
De Vylder A, Lauwaert J, Sabbe MK, Reyniers MF, De Clercq J, Van Der Voort P, Thybaut JW. Rational design of nucleophilic amine sites via computational probing of steric and electronic effects. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Cavalli F, De Keer L, Huber B, Van Steenberge PHM, D'hooge DR, Barner L. A kinetic study on the para-fluoro-thiol reaction in view of its use in materials design. Polym Chem 2019. [DOI: 10.1039/c9py00435a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A detailed kinetic study on the para-fluoro-thiol reaction (PFTR) using experimental analysis and kinetic Monte Carlo modeling is introduced, covering the difference in reactivity of a selected variety of structurally different thiols, uniquely including polymeric thiols.
Collapse
Affiliation(s)
- Federica Cavalli
- Soft Matter Synthesis Laboratory
- Institut für Biologische Grenzflächen
- Karlsruhe Institute of Technology (KIT)
- Eggenstein-Leopoldshafen
- Germany
| | - Lies De Keer
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde (Ghent)
- Belgium
| | - Birgit Huber
- Soft Matter Synthesis Laboratory
- Institut für Biologische Grenzflächen
- Karlsruhe Institute of Technology (KIT)
- Eggenstein-Leopoldshafen
- Germany
| | | | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde (Ghent)
- Belgium
- Centre for Textile Science and Engineering (CTSE)
| | - Leonie Barner
- Soft Matter Synthesis Laboratory
- Institut für Biologische Grenzflächen
- Karlsruhe Institute of Technology (KIT)
- Eggenstein-Leopoldshafen
- Germany
| |
Collapse
|
11
|
Bolshchikov BD, Tsvetkov VB, Serbin AV. Practical procedure for a theoretical investigation of thermodynamics and kinetics aspects of different-scale radical reactions from addition and cyclization to cyclocopolymerization involving maleic anhydride and divinyl ether. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
D'hooge DR. In Silico Tracking of Individual Species Accelerating Progress in Macromolecular Engineering and Design. Macromol Rapid Commun 2018; 39:e1800057. [PMID: 29656408 DOI: 10.1002/marc.201800057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/18/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT); Technologiepark 914 Ghent 9052 Belgium
- Centre for Textile Science and Engineering (CSTE); Technologiepark 907 Ghent 9052 Belgium
| |
Collapse
|