1
|
Chawla V, Roy S, Raju J, Bundel P, Pal D, Singh Y. Proangiogenic Cyclic Peptide Nanotubes for Diabetic Wound Healing. ACS APPLIED BIO MATERIALS 2025; 8:2787-2799. [PMID: 40107871 DOI: 10.1021/acsabm.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
An intricate biochemical system of coordinated cellular reactions is involved in restoring damaged tissue after wounds. In chronic wounds, such as diabetic foot ulcers, poor angiogenesis is a common stumbling block due to elevated glucose levels, increased proteolytic enzyme activity, and decreased production of growth factors. While various strategies, including modulation of inflammatory cells, administration of growth factors, and therapies involving stem cells or genes, have been explored to promote angiogenesis, they often suffer from limitations such as poor biodistribution, immunological rejection, administration/dosing, and proteolytic instability. Glycosaminoglycans, such as heparan sulfate, facilitate growth factor interactions with their receptors to induce angiogenic signaling, but their exogenous administration is hindered by poor stability, low serum half-life, and immunogenicity. Cyclic peptides, known for their structural stability and specificity, offer a promising alternative for inducing angiogenesis upon functional modifications. In this work, we developed heparan sulfate (HS)-mimetic cyclic peptide nanotubes (CPNTs) grafted with bioactive groups to enhance angiogenesis without using exogenous growth factors, drugs, or supplements. These CPNTs incorporate glutamic acid, serine, and sulfonated lysine to mimic the functional groups in heparin. The sulfonated cyclic hexapeptide nanotubes developed from DPro-LTrp-DLeu-LSer-DGlu-LLys demonstrated significant proangiogenic activity in HUVECs under hyperglycemic conditions; enhanced endothelial cell motility, invasion, and tube formation; and upregulation of proangiogenic genes and proteins. These HS-mimicking nanotubes have shown a strong potential for promoting impaired angiogenesis, without incorporating exogenous growth factors, and show strong potential in treating diabetic wounds. To the best of our knowledge, this is the first report on the use of HS-mimetic proangiogenic cyclic peptide nanotubes for diabetic wound healing.
Collapse
Affiliation(s)
- Vatan Chawla
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| | - Soumyajit Roy
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| | - John Raju
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| | - Pruthviraj Bundel
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| |
Collapse
|
2
|
Cheng Z, Song Q, Hall SCL, Perrier S. pH-Responsive nanotubes from asymmetric cyclic peptide-polymer conjugates. Chem Sci 2025; 16:1894-1906. [PMID: 39720137 PMCID: PMC11665818 DOI: 10.1039/d4sc06288d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/06/2024] [Indexed: 12/26/2024] Open
Abstract
Self-assembling cyclic peptide nanotubes are fascinating supramolecular systems with promising potential for various applications, such as drug delivery, transmembrane ionic channels, and artificial light-harvesting systems. In this study, we present novel pH-responsive nanotubes based on asymmetric cyclic peptide-polymer conjugates. The pH response is introduced by a tertiary amine-based polymer, poly(dimethylamino ethyl methacrylate) (pDMAEMA) or poly(diethylamino ethyl methacrylate) (pDEAEMA) which is protonated at low pH. The self-assembling behaviour of their corresponding conjugates is investigated using different scattering and spectroscopy techniques. Compared to conjugates with hydrophilic polymeric corona, the introduction of hydrophobic polymer chains on the periphery of the cyclic peptides can prevent water molecules from penetrating through to the peptide rings, allowing the construction of hydrogen bonding interactions between cyclic peptides to form longer nanotubes. The switching between assembly and non-assembly is triggered by the change in the surrounding environmental pH, which process is controlled by the coordination between hydrophobic interactions and electrostatic repulsions. Due to the different hydrophobicity of these two polymers, the self-assembly of their corresponding conjugates varies extensively. We first demonstrate this evolution in detail and describe the relationship between the self-assembly and the inherent properties of grafted polymers, such as polymer compositions, the protonation degree of the responsive polymers and the polymer molecular weight in solutions.
Collapse
Affiliation(s)
- Zihe Cheng
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Qiao Song
- Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 China
| | - Stephen C L Hall
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Warwick Medical School, University of Warwick Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| |
Collapse
|
3
|
Ruppelt D, Ackermann ELM, Robinson T, Steinem C. Assessing the mechanism of facilitated proton transport across GUVs trapped in a microfluidic device. Biophys J 2024; 123:3267-3274. [PMID: 39066477 PMCID: PMC11428277 DOI: 10.1016/j.bpj.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Proton transport across lipid membranes is one of the most fundamental reactions that make up living organisms. In vitro, however, the study of proton transport reactions can be very challenging due to limitations imposed by proton concentrations, compartment size, and unstirred layers as well as buffer exchange and buffer capacity. In this study, we have developed a proton permeation assay based on the microfluidic trapping of giant vesicles enclosing the pH-sensitive dye pyranine to address some of these challenges. Time-resolved fluorescence imaging upon a rapid pH shift enabled us to investigate the facilitated H+ permeation mediated by either a channel or a carrier. Specifically, we compared the proton transport rates as a function of different proton gradients of the channel gramicidin D and the proton carrier carbonyl cyanide-m-chlorophenyl hydrazone. Our results demonstrate the efficacy of the assay in monitoring proton transport reactions and distinguishing between a channel-like and a carrier-like mechanism. This groundbreaking result enabled us to elucidate the enigmatic mode of the proton permeation mechanism of the recently discovered natural fibupeptide lugdunin.
Collapse
Affiliation(s)
- Dominik Ruppelt
- Institute of Organic and Biomolecular Chemistry, Georg-August Universität Göttingen, Göttingen, Germany
| | - Elena L M Ackermann
- Institute of Organic and Biomolecular Chemistry, Georg-August Universität Göttingen, Göttingen, Germany
| | - Tom Robinson
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
4
|
Picci G, Marchesan S, Caltagirone C. Ion Channels and Transporters as Therapeutic Agents: From Biomolecules to Supramolecular Medicinal Chemistry. Biomedicines 2022; 10:biomedicines10040885. [PMID: 35453638 PMCID: PMC9032600 DOI: 10.3390/biomedicines10040885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Ion channels and transporters typically consist of biomolecules that play key roles in a large variety of physiological and pathological processes. Traditional therapies include many ion-channel blockers, and some activators, although the exact biochemical pathways and mechanisms that regulate ion homeostasis are yet to be fully elucidated. An emerging area of research with great innovative potential in biomedicine pertains the design and development of synthetic ion channels and transporters, which may provide unexplored therapeutic opportunities. However, most studies in this challenging and multidisciplinary area are still at a fundamental level. In this review, we discuss the progress that has been made over the last five years on ion channels and transporters, touching upon biomolecules and synthetic supramolecules that are relevant to biological use. We conclude with the identification of therapeutic opportunities for future exploration.
Collapse
Affiliation(s)
- Giacomo Picci
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Correspondence: (S.M.); (C.C.)
| | - Claudia Caltagirone
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
- Correspondence: (S.M.); (C.C.)
| |
Collapse
|
5
|
Raganato L, Del Giudice A, Ceccucci A, Sciubba F, Casciardi S, Sennato S, Scipioni A, Masci G. Self-assembling nanowires from a linear l,d-peptide conjugated to the dextran end group. Int J Biol Macromol 2022; 207:656-665. [PMID: 35292281 DOI: 10.1016/j.ijbiomac.2022.03.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
Preparation and characterization of a block-like l,d-octapeptide-dextran conjugate DEX29-(l-Val-d-Val)4 self-assembling into nanowire structures is reported. The conjugate was prepared by solid phase click-chemistry on an alkyne group N-terminus functionalized peptide with a regularly alternating enantiomeric sequence. Low molecular weight dextran (Xn = 29) with moderately low dispersity (1.30) was prepared by controlled acid hydrolysis and dialysis with selected cut-off and functionalized with an azido group on the reducing end by reductive amination. The strong hydrogen bonds and hydrophobic interactions of the (l-Val-d-Val)4 linear peptide drive the conjugate to self-assemble into long (0.1-1 μm) nanowires. To our knowledge, this is the first example of a peptide-polysaccharide conjugate that can self-assemble into a nanowire architecture.
Collapse
Affiliation(s)
- Luca Raganato
- Department of Chemistry, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Alessandra Del Giudice
- Department of Chemistry, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Anita Ceccucci
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, via Vito Volterra 62, Roma, Italy
| | - Fabio Sciubba
- Department of Environmental biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Stefano Casciardi
- National Institute for Insurance Against Accidents at Work (INAIL Research), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Rome, Italy
| | - Simona Sennato
- Institute for Complex Systems, National Research Council (ISC-CNR), Sede Sapienza and Department of Physics, Sapienza Università di Roma, P.le A. Moro, 2, 00185, Rome, Italy
| | - Anita Scipioni
- Department of Chemistry, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy.
| | - Giancarlo Masci
- Department of Chemistry, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy.
| |
Collapse
|
6
|
Folgado E, Song Q, Perrier S, Ladmiral V, Semsarilar M. Fluorinated nanotubes: synthesis and self-assembly of cyclic peptide-poly(vinylidene fluoride) conjugates. Polym Chem 2021; 12:4235-4243. [PMID: 35126685 PMCID: PMC8734003 DOI: 10.1039/d1py00355k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023]
Abstract
The synthesis of cyclic peptide-poly(vinylidene fluoride) (CP-PVDF) conjugates comprising (d-alt-l)-cyclopeptides as building blocks and their self-assembly into tube-like structures is described. By growing two PVDF polymeric chains from opposite sides of a preassembled cyclic-peptide macro-chain transfer agent, a PVDF-CP-PVDF conjugate was prepared. This "grafting-from" strategy, allowed the synthesis of the conjugate with high purity and using facile purification steps. The controlled self-assembly of the conjugate from DMF or DMSO solutions was carried out by addition of THF. This triggered the aggregation process that led to formation of tube-like structures. The mean length and width of the PVDF-CP-PVDF tubes were measured using atomic force microscopy (AFM) and transmission electron microscopy (TEM). Surprisingly, the self-assembly of the CP-PVDF conjugates in DMF/THF allowed the preparation of long (up to 25 μm) tube-like structures. The formation of such long tubular peptide-polymer aggregates, based on the stacking of cyclopeptides, is unprecedented and is believed to rely on synergetic effects between the stacking of the cyclic peptide and the interactions of the fluoropolymer-peptide conjugates.
Collapse
Affiliation(s)
- Enrique Folgado
- Institut Charles Gerhardt Montpellier, ICGM, Univ Montpellier, CNRS, ENSCM Montpellier France
- Institut Européen des Membranes, IEM, Univ Montpellier, CNRS, ENSCM Montpellier France
| | - Qiao Song
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Sebastien Perrier
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Faculty of Pharmacy, Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Warwick Medical School, The University of Warwick Coventry CV4 7AL UK
| | - Vincent Ladmiral
- Institut Charles Gerhardt Montpellier, ICGM, Univ Montpellier, CNRS, ENSCM Montpellier France
| | - Mona Semsarilar
- Institut Européen des Membranes, IEM, Univ Montpellier, CNRS, ENSCM Montpellier France
| |
Collapse
|
7
|
Rho JY, Perrier S. 100th Anniversary of Macromolecular Science Viewpoint: User's Guide to Supramolecular Peptide-Polymer Conjugates. ACS Macro Lett 2021; 10:258-271. [PMID: 35570781 DOI: 10.1021/acsmacrolett.0c00734] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This Viewpoint highlights the design principles and development of peptide-based supramolecular polymers. Here we delve deep into the practicalities of synthesizing and characterizing these macromolecular structures and provide a thorough overview of the benefits and challenges that come with these systems. This Viewpoint emphasizes to beginners and experts alike the importance of understanding the fundamental behavior and self-assembly processes when designing these complex and dynamic functional materials.
Collapse
Affiliation(s)
- Julia Y Rho
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville Victoria 3052, Australia.,Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
8
|
Wang X, Du H, Wang Z, Mu W, Han X. Versatile Phospholipid Assemblies for Functional Synthetic Cells and Artificial Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002635. [PMID: 32830387 DOI: 10.1002/adma.202002635] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The bottom-up construction of a synthetic cell from nonliving building blocks capable of mimicking cellular properties and behaviors helps to understand the particular biophysical properties and working mechanisms of a cell. A synthetic cell built in this way possesses defined chemical composition and structure. Since phospholipids are native biomembrane components, their assemblies are widely used to mimic cellular structures. Here, recent developments in the formation of versatile phospholipid assemblies are described, together with the applications of these assemblies for functional membranes (protein reconstituted giant unilamellar vesicles), spherical and nonspherical protoorganelles, and functional synthetic cells, as well as the high-order hierarchical structures of artificial tissues. Their biomedical applications are also briefly summarized. Finally, the challenges and future directions in the field of synthetic cells and artificial tissues based on phospholipid assemblies are proposed.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shangdong Province, Harbin Institute of Technology, Weihai, 264209, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
9
|
|
10
|
Gruschwitz FV, Klein T, Catrouillet S, Brendel JC. Supramolecular polymer bottlebrushes. Chem Commun (Camb) 2020; 56:5079-5110. [PMID: 32347854 DOI: 10.1039/d0cc01202e] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of supramolecular chemistry has long been known to generate complex materials of different sizes and shapes via the self-assembly of single or multiple low molar mass building blocks. Matching the complexity found in natural assemblies, however, remains a long-term challenge considering its precision in organizing large macromolecules into well-defined nanostructures. Nevertheless, the increasing understanding of supramolecular chemistry has paved the way to several attempts in arranging synthetic macromolecules into larger ordered structures based on non-covalent forces. This review is a first attempt to summarize the developments in this field, which focus mainly on the formation of one-dimensional, linear, cylindrical aggregates in solution with pendant polymer chains - therefore coined supramolecular polymer bottlebrushes in accordance with their covalent equivalents. Distinguishing by the different supramolecular driving forces, we first describe systems based on π-π interactions, which comprise, among others, the well-known perylene motif, but also the early attempts using cyclophanes. However, the majority of reported supramolecular polymer bottlebrushes are formed by hydrogen bonds as they can for example be found in linear and cyclic peptides, as well as so called sticker molecules containing multiple urea groups. Besides this overview on the reported motifs and their impact on the resulting morphology of the polymer nanostructures, we finally highlight the potential benefits of such non-covalent interactions and refer to promising future directions of this still mostly unrecognized field of supramolecular research.
Collapse
Affiliation(s)
- Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | | | |
Collapse
|
11
|
De Santis S, Novelli F, Sciubba F, Casciardi S, Sennato S, Morosetti S, Scipioni A, Masci G. Switchable length nanotubes from a self-assembling pH and thermosensitive linear l,d-peptide-polymer conjugate. J Colloid Interface Sci 2019; 547:256-266. [PMID: 30954769 DOI: 10.1016/j.jcis.2019.03.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 01/30/2023]
Abstract
Preparation and characterization of a pH and thermosensitive linear l,d-octapeptide-poly(dimethylamino ethyl methacrylate) ((l-Val-d-Val)4-PDMAEMA) conjugate is reported. The hydrophobic uncharged linear (l-Val-d-Val)4 octapeptide was designed to self-assemble in nanotubes by exploiting the tubular self-assembling properties of linear peptides with regularly alternating enantiomeric sequences. pH and thermosensitive PDMAEMA was obtained by atom transfer radical polymerization (ATRP). The conjugate was prepared by click-chemistry on the solid phase synthetized peptide. Because of the strong interactions between the peptide moieties, long single channel nanotubes (0.2-1.5 μm) are formed also at acidic pH with the fully charged polymer. At 25 °C and basic pH the size of the nanotubes did not change significantly. In basic conditions and temperature above the PDMAEMA lower critical solution temperature (LCST) a significant increase of the length of the nanotubes up to several micrometers is observed. The size is retained for several days after cooling back to room temperature. Sonication significantly reduces the nanotube length (0.2-0.5 μm) forming low polydisperse nanotubes. The elongation of the nanotubes is fully reversible by restoring acidic pH. This is the first example, to our knowledge, of thermosensitive peptide-polymer single channel nanotubes with length that can be varied from hundreds of nanometers to several micrometers.
Collapse
Affiliation(s)
- Serena De Santis
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Federica Novelli
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Fabio Sciubba
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Stefano Casciardi
- National Institute for Insurance against Accidents at Work (INAIL Research), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Rome, Italy
| | - Simona Sennato
- Institute for Complex Systems, National Research Council (ISC-CNR), Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro, 2 00185 Rome, Italy
| | - Stefano Morosetti
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Anita Scipioni
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Giancarlo Masci
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy.
| |
Collapse
|