1
|
Serkhacheva NS, Prokopov NI, Lysenko EA, Kozhunova EY, Chernikova EV. Modern Trends in Polymerization-Induced Self-Assembly. Polymers (Basel) 2024; 16:1408. [PMID: 38794601 PMCID: PMC11125046 DOI: 10.3390/polym16101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered.
Collapse
Affiliation(s)
- Natalia S. Serkhacheva
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Nickolay I. Prokopov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Evgenii A. Lysenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| | - Elena Yu. Kozhunova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, bld. 2, 119991 Moscow, Russia
| | - Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| |
Collapse
|
2
|
Petrov A, Chertovich AV, Gavrilov AA. Phase Diagrams of Polymerization-Induced Self-Assembly Are Largely Determined by Polymer Recombination. Polymers (Basel) 2022; 14:polym14235331. [PMID: 36501725 PMCID: PMC9736918 DOI: 10.3390/polym14235331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
In the current work, atom transfer radical polymerization-induced self-assembly (ATRP PISA) phase diagrams were obtained by the means of dissipative particle dynamics simulations. A fast algorithm for determining the equilibrium morphology of block copolymer aggregates was developed. Our goal was to assess how the chemical nature of ATRP affects the self-assembly of diblock copolymers in the course of PISA. We discovered that the chain growth termination via recombination played a key role in determining the ATRP PISA phase diagrams. In particular, ATRP with turned off recombination yielded a PISA phase diagram very similar to that obtained for a simple ideal living polymerization process. However, an increase in the recombination probability led to a significant change of the phase diagram: the transition between cylindrical micelles and vesicles was strongly shifted, and a dependence of the aggregate morphology on the concentration was observed. We speculate that this effect occurred due to the simultaneous action of two factors: the triblock copolymer architecture of the terminated chains and the dispersity of the solvophobic blocks. We showed that these two factors affected the phase diagram weakly if they acted separately; however, their combination, which naturally occurs during ATRP, affected the ATRP PISA phase diagram strongly. We suggest that the recombination reaction is a key factor leading to the complexity of experimental PISA phase diagrams.
Collapse
Affiliation(s)
- Artem Petrov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| | - Alexander V. Chertovich
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Semenov Federal Research Center for Chemical Physics, 119991 Moscow, Russia
| | - Alexey A. Gavrilov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Semenov Federal Research Center for Chemical Physics, 119991 Moscow, Russia
| |
Collapse
|
3
|
Li C, Zhao W, He J, Zhang Y, Zhang W. Single‐Step Expeditious Synthesis of Diblock Copolymers with Different Morphologies by Lewis Pair Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2022; 61:e202202448. [DOI: 10.1002/anie.202202448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Chengkai Li
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
4
|
Li C, Zhao W, He J, Zhang Y, Zhang W. Single‐Step Expeditious Synthesis of Diblock Copolymers with Different Morphologies by Lewis Pair Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chengkai Li
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
5
|
Wei D, Li H, Yang C, Fu J, Chen H, Bai L, Wang W, Yang H, Yang L, Liang Y. Visible light‐driven acridone catalysis for atom transfer radical polymerization. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Donglei Wei
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Huili Li
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Chuanqing Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Jianmin Fu
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Hou Chen
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Huawei Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Lixia Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Ying Liang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| |
Collapse
|
6
|
Niu B, Chen Y, Zhang L, Tan J. Organic–inorganic hybrid nanomaterials prepared via polymerization-induced self-assembly: recent developments and future opportunities. Polym Chem 2022. [DOI: 10.1039/d2py00180b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review highlights recent developments in the preparation of organic–inorganic hybrid nanomaterials via polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Bing Niu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
7
|
Luo X, Zhao S, Chen Y, Zhang L, Tan J. Switching between Thermal Initiation and Photoinitiation Redirects RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00038] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xuhui Luo
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shanzhi Zhao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
8
|
Phan H, Taresco V, Penelle J, Couturaud B. Polymerisation-induced self-assembly (PISA) as a straightforward formulation strategy for stimuli-responsive drug delivery systems and biomaterials: recent advances. Biomater Sci 2021; 9:38-50. [PMID: 33179646 DOI: 10.1039/d0bm01406k] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive amphiphilic block copolymers have emerged as promising nanocarriers for enhancing site-specific and on-demand drug release in response to a range of stimuli such as pH, the presence of redox agents, and temperature. The formulation of amphiphilic block copolymers into polymeric drug-loaded nanoparticles is typically achieved by various methods (e.g. oil-in-water emulsion solvent evaporation, solid dispersion, microphase separation, dialysis or microfluidic separation). Despite much progress that has been made, there remain many challenges to overcome to produce reliable polymeric systems. The main drawbacks of the above methods are that they produce very low solid contents (<1 wt%) and involve multiple-step procedures, thus limiting their scope. Recently, a new self-assembly methodology, polymerisation-induced self-assembly (PISA), has shown great promise in the production of polymer-derived particles using a straightforward one-pot approach, whilst facilitating high yield, scalability, and cost-effectiveness for pharmaceutical industry protocols. We therefore focus this review primarily on the most recent studies involved in the design and preparation of PISA-generated nano-objects which are responsive to specific stimuli, thus providing insight into how PISA may become an effective formulation strategy for the preparation of precisely tailored drug delivery systems and biomaterials, while some of the current challenges and limitations are also critically discussed.
Collapse
Affiliation(s)
- Hien Phan
- Univ Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 rue Henri Dunant, 94320 Thiais, France.
| | | | | | | |
Collapse
|
9
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐vermittelte polymerisationsinduzierte Selbstorganisation (PISA). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911758] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris Frankreich
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| |
Collapse
|
10
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐Mediated Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2020; 59:8368-8392. [DOI: 10.1002/anie.201911758] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM) Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris France
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| |
Collapse
|
11
|
Liu C, Hong CY, Pan CY. Polymerization techniques in polymerization-induced self-assembly (PISA). Polym Chem 2020. [DOI: 10.1039/d0py00455c] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of controlled/“living” polymerization greatly stimulated the prosperity of the fabrication and application of block copolymer nano-objects.
Collapse
Affiliation(s)
- Chao Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
12
|
Abstract
Mother Nature produces a perfectly defined architecture that inspires researchers to make polymeric macromolecules for an array of functions. The present article describes recent development in the PISA to synthesize polymeric nano-objects.
Collapse
Affiliation(s)
- Shivshankar R. Mane
- Polymer Science and Engineering Division
- CSIR – National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
13
|
Shi B, Zhang H, Liu Y, Wang J, Zhou P, Cao M, Wang G. Development of ICAR ATRP–Based Polymerization‐Induced Self‐Assembly and Its Application in the Preparation of Organic–Inorganic Nanoparticles. Macromol Rapid Commun 2019; 40:e1900547. [DOI: 10.1002/marc.201900547] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/04/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Boyang Shi
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Hao Zhang
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Yi Liu
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Jian Wang
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Peng Zhou
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Mengya Cao
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| |
Collapse
|
14
|
Cao M, Zhang Y, Wang J, Fan X, Wang G. ICAR ATRP Polymerization‐Induced Self‐Assembly Using a Mixture of Macroinitiator/Stabilizer with Different Molecular Weights. Macromol Rapid Commun 2019; 40:e1900296. [DOI: 10.1002/marc.201900296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Mengya Cao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsKey Laboratory of Green Chemical Media and Reactions Ministry of EducationSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453007 China
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Yixiang Zhang
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Jian Wang
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Xiaoshan Fan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsKey Laboratory of Green Chemical Media and Reactions Ministry of EducationSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453007 China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| |
Collapse
|
15
|
Affiliation(s)
- Muriel Lansalot
- Chemistry, Catalysis, Polymers and Processes (C2P2); Univ Lyon, Université Claude Bernard Lyon 1; CPE Lyon, CNRS, UMR 5265; 43 Bd du 11 Novembre 1918; 69616 Villeurbanne France
| | - Jutta Rieger
- Institut Parisien de Chimie Moléculaire (IPCM); Polymer Chemistry Team; Sorbonne Université, CNRS, UMR 82324, Place Jussieu 75005 Paris France
| |
Collapse
|