1
|
Yew PYM, Chee PL, Lin Q, Owh C, Li J, Dou QQ, Loh XJ, Kai D, Zhang Y. Hydrogel for light delivery in biomedical applications. Bioact Mater 2024; 37:407-423. [PMID: 38689660 PMCID: PMC11059474 DOI: 10.1016/j.bioactmat.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Traditional optical waveguides or mediums are often silica-based materials, but their applications in biomedicine and healthcare are limited due to the poor biocompatibility and unsuitable mechanical properties. In term of the applications in human body, a biocompatible hydrogel system with excellent optical transparency and mechanical flexibility could be beneficial. In this review, we explore the different designs of hydrogel-based optical waveguides derived from natural and synthetic sources. We highlighted key developments such as light emitting contact lenses, implantable optical fibres, biosensing systems, luminating and fluorescent materials. Finally, we expand further on the challenges and perspectives for hydrogel waveguides to achieve clinical applications.
Collapse
Affiliation(s)
- Pek Yin Michelle Yew
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Pei Lin Chee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Jiayi Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Qing Qing Dou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Dan Kai
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
2
|
Du W, Liu J, Li H, Deng C, Luo J, Feng Q, Tan Y, Yang S, Wu Z, Xiao F. Competition-Based Two-Dimensional Photonic Crystal Dually Cross-Linked Supramolecular Hydrogel for Colorimetric and Fluorescent Dual-Mode Sensing of Bisphenol A. Anal Chem 2023; 95:4220-4226. [PMID: 36786428 DOI: 10.1021/acs.analchem.2c05662] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Bisphenol A (BPA), one of the most abundantly produced endocrine disrupting chemicals, is widely used in everyday plastic products and thus must be monitored. Multimode sensing platforms are able to combine the advantages of different strategies while solving the issues of inaccurate test results of single signal sensing. However, the exploration in this field is limited due to the compromise of sensing conditions and inevitable mutual interferences of different systems. Herein, we constructed a two-dimensional photonic crystal dually cross-linked supramolecular hydrogel (2DPCDCSH) by utilizing a host-guest pair of β-cyclodextrin (β-CD) and tert-butyl (t-Bu) as the second cross-linking for colorimetric and fluorescent dual-mode sensing of BPA. Based on the fact that BPA can act as a competitive guest to break the host-guest interaction between β-CD and t-Bu, the cross-linking density decreased and an expansion-induced structural color change occurred. Sensitive and selective BPA detection can be easily achieved by measuring the Debye diffraction ring diameter or observing the color change of 2DPC with a detection limit of 1 μg mL-1. Moreover, the formation of the β-CD/BPA complex gave a significant enhancement of the intrinsic fluorescence of BPA, obtaining a detection limit of 0.001 μg mL-1. The two sensing systems can share the same reaction condition and yield a wider dynamic response range than the single signal strategy. Overall, the proposed method presented an efficient, rapid, cost-effective, and regenerative dual-mode method for BPA analysis and shed new insights for the design of diversified sensing platforms.
Collapse
Affiliation(s)
- Wenfang Du
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.,College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China
| | - Jie Liu
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hong Li
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenyi Deng
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jie Luo
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Qianqian Feng
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yan Tan
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shengyuan Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhaoyang Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Fubing Xiao
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Quaternary-ammonium-based Supramolecular gel for Temporary Plugging Diversion Fracturing. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
4
|
Huang X, Feng B, Liu M, Liu Z, Li S, Zeng W. Preclinical detection of lysophosphatidic acid: A new window for ovarian cancer diagnostics. Talanta 2022; 247:123561. [DOI: 10.1016/j.talanta.2022.123561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 12/17/2022]
|
5
|
Wang S, Ong PJ, Liu S, Thitsartarn W, Tan MJBH, Suwardi A, Zhu Q, Loh XJ. Recent advances in host-guest supramolecular hydrogels for biomedical applications. Chem Asian J 2022; 17:e202200608. [PMID: 35866560 DOI: 10.1002/asia.202200608] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Indexed: 11/09/2022]
Abstract
The recognition-directed host-guest interaction is recognized as a valuable tool for creating supramolecular polymers. Functional hydrogels constructed through the dynamic and reversible host-guest complexation are endowed with a great many appealing features, such as superior self-healing, injectability, flexibility, stimuli-responsiveness and biocompatibility, which are crucial for biological and medicinal applications. With numerous topological structures and host-guest combinations established previously, recent breakthroughs in this area mostly focus on further improvement and fine-tuning of various properties for practical utilizations. The current contribution provides a comprehensive overview of the latest developments in host-guest supramolecular hydrogels, with a particular emphasis on the innovative molecular-level design strategies and hydrogel formation methodologies targeting at a wide range of active biomedical domains, including drug delivery, 3D printing, wound healing, tissue engineering, artificial actuators, biosensors, etc. Furthermore, a brief conclusion and discussion on the steps forward to bring these smart hydrogels to clinical practice is also presented.
Collapse
Affiliation(s)
- Suxi Wang
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Pin Jin Ong
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Songlin Liu
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | | | - Ady Suwardi
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Qiang Zhu
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, 2 Fusionopolis Way, 138634, Singapore, SINGAPORE
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| |
Collapse
|
6
|
Ghorbanizamani F, Moulahoum H, Guler Celik E, Timur S. Ionic liquids enhancement of hydrogels and impact on biosensing applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Diehl F, Hageneder S, Fossati S, Auer SK, Dostalek J, Jonas U. Plasmonic nanomaterials with responsive polymer hydrogels for sensing and actuation. Chem Soc Rev 2022; 51:3926-3963. [PMID: 35471654 PMCID: PMC9126188 DOI: 10.1039/d1cs01083b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/25/2022]
Abstract
Plasmonic nanomaterials have become an integral part of numerous technologies, where they provide important functionalities spanning from extraction and harvesting of light in thin film optical devices to probing of molecular species and their interactions on biochip surfaces. More recently, we witness increasing research efforts devoted to a new class of plasmonic nanomaterials that allow for on-demand tuning of their properties by combining metallic nanostructures and responsive hydrogels. This review addresses this recently emerged vibrant field, which holds potential to expand the spectrum of possible applications and deliver functions that cannot be achieved by separate research in each of the respective fields. It aims at providing an overview of key principles, design rules, and current implementations of both responsive hydrogels and metallic nanostructures. We discuss important aspects that capitalize on the combination of responsive polymer networks with plasmonic nanostructures to perform rapid mechanical actuation and actively controlled nanoscale confinement of light associated with resonant amplification of its intensity. The latest advances towards the implementation of such responsive plasmonic nanomaterials are presented, particularly covering the field of plasmonic biosensing that utilizes refractometric measurements as well as plasmon-enhanced optical spectroscopy readout, optically driven miniature soft actuators, and light-fueled micromachines operating in an environment resembling biological systems.
Collapse
Affiliation(s)
- Fiona Diehl
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf Reichwein-Straße 2, 57074 Siegen, Germany.
| | - Simone Hageneder
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Stefan Fossati
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Simone K Auer
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
- CEST Competence Center for Electrochemical Surface Technologies, 3430 Tulln an der Donau, Austria
| | - Jakub Dostalek
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
- FZU-Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 21, Czech Republic
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf Reichwein-Straße 2, 57074 Siegen, Germany.
| |
Collapse
|
8
|
Mihajlovic M, Rikkers M, Mihajlovic M, Viola M, Schuiringa G, Ilochonwu BC, Masereeuw R, Vonk L, Malda J, Ito K, Vermonden T. Viscoelastic Chondroitin Sulfate and Hyaluronic Acid Double-Network Hydrogels with Reversible Cross-Links. Biomacromolecules 2022; 23:1350-1365. [PMID: 35195399 PMCID: PMC8924925 DOI: 10.1021/acs.biomac.1c01583] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/11/2022] [Indexed: 12/13/2022]
Abstract
Viscoelastic hydrogels are gaining interest as they possess necessary requirements for bioprinting and injectability. By means of reversible, dynamic covalent bonds, it is possible to achieve features that recapitulate the dynamic character of the extracellular matrix. Dually cross-linked and double-network (DN) hydrogels seem to be ideal for the design of novel biomaterials and bioinks, as a wide range of properties required for mimicking advanced and complex tissues can be achieved. In this study, we investigated the fabrication of chondroitin sulfate/hyaluronic acid (CS/HA)-based DN hydrogels, in which two networks are interpenetrated and cross-linked with the dynamic covalent bonds of very different lifetimes. Namely, Diels-Alder adducts (between methylfuran and maleimide) and hydrazone bonds (between aldehyde and hydrazide) were chosen as cross-links, leading to viscoelastic hydrogels. Furthermore, we show that viscoelasticity and the dynamic character of the resulting hydrogels could be tuned by changing the composition, that is, the ratio between the two types of cross-links. Also, due to a very dynamic nature and short lifetime of hydrazone cross-links (∼800 s), the DN hydrogel is easily processable (e.g., injectable) in the first stages of gelation, allowing the material to be used in extrusion-based 3D printing. The more long-lasting and robust Diels-Alder cross-links are responsible for giving the network enhanced mechanical strength and structural stability. Being highly charged and hydrophilic, the cross-linked CS and HA enable a high swelling capacity (maximum swelling ratio ranging from 6 to 12), which upon confinement results in osmotically stiffened constructs, able to mimic the mechanical properties of cartilage tissue, with the equilibrium moduli ranging from 0.3 to 0.5 MPa. Moreover, the mesenchymal stromal cells were viable in the presence of the hydrogels, and the effect of the degradation products on the macrophages suggests their safe use for further translational applications. The DN hydrogels with dynamic covalent cross-links hold great potential for the development of novel smart and tunable viscoelastic materials to be used as biomaterial inks or bioinks in bioprinting and regenerative medicine.
Collapse
Affiliation(s)
- Marko Mihajlovic
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Margot Rikkers
- Department
of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3508
GA Utrecht, The Netherlands
| | - Milos Mihajlovic
- Department
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Martina Viola
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- Department
of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3508
GA Utrecht, The Netherlands
| | - Gerke Schuiringa
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Blessing C. Ilochonwu
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Department
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Lucienne Vonk
- Department
of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3508
GA Utrecht, The Netherlands
| | - Jos Malda
- Department
of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3508
GA Utrecht, The Netherlands
- Department
of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508
GA Utrecht, the Netherlands
| | - Keita Ito
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
- Department
of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3508
GA Utrecht, The Netherlands
| | - Tina Vermonden
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
9
|
Rodin M, Li J, Kuckling D. Dually cross-linked single networks: structures and applications. Chem Soc Rev 2021; 50:8147-8177. [PMID: 34059857 DOI: 10.1039/d0cs01585g] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cross-linked polymers have attracted an immense attention over the years, however, there are many flaws of these systems, e.g. softness and brittleness; such materials possess non-adjustable properties and cannot recover from damage and thus are limited in their practical applications. Supramolecular chemistry offers a variety of dynamic interactions that when integrated into polymeric gels endow the systems with reversibility and responsiveness to external stimuli. A combination of different cross-links in a single gel could be the key to tackle these drawbacks, since covalent or chemical cross-linking serve to maintain the permanent shape of the material and to improve overall mechanical performance, whereas non-covalent cross-links impart dynamicity, reversibility, stimuli-responsiveness and often toughness to the material. In the present review we sought to give a comprehensive overview of the progress in design strategies of different types of dually cross-linked single gels made by researchers over the past decade as well as the successful implementations of these advances in many demanding fields where versatile multifunctional materials are required, such as tissue engineering, drug delivery, self-healing and adhesive systems, sensors as well as shape memory materials and actuators.
Collapse
Affiliation(s)
- Maksim Rodin
- Department of Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| | | | | |
Collapse
|
10
|
Bernhard S, Tibbitt MW. Supramolecular engineering of hydrogels for drug delivery. Adv Drug Deliv Rev 2021; 171:240-256. [PMID: 33561451 DOI: 10.1016/j.addr.2021.02.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Supramolecular binding motifs are increasingly employed in the design of biomaterials. The ability to rationally engineer specific yet reversible associations into polymer networks with supramolecular chemistry enables injectable or sprayable hydrogels that can be applied via minimally invasive administration. In this review, we highlight two main areas where supramolecular binding motifs are being used in the design of drug delivery systems: engineering network mechanics and tailoring drug-material affinity. Throughout, we highlight many of the established and emerging chemistries or binding motifs that are useful for the design of supramolecular hydrogels for drug delivery applications.
Collapse
|
11
|
|
12
|
Li J, Ji C, Lü B, Rodin M, Paradies J, Yin M, Kuckling D. Dually Crosslinked Supramolecular Hydrogel for Cancer Biomarker Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36873-36881. [PMID: 32701258 DOI: 10.1021/acsami.0c08722] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lysophosphatidic acid (LPA) as the biomarker of early stage ovarian cancer is essentially difficult to detect due to lack of target spots. A dually crosslinked supramolecular hydrogel (DCSH) was developed to achieve sensing of LPA, which acts as a competitive guest molecule triggering the responsive crosslinking of the DCSH. Through this strategy, the surface plasmon resonance combined with optical waveguide spectroscopy could be used to quantitatively detect LPA with a responsive range covering physiological conditions (in pure form as well as mimicking LPA plasma solution) with high selectivity and sensitivity. LPA efficiently immerses into the host molecule β-cyclodextrin (β-CD) up to a 1:2 ratio by the competitive interaction mechanism, confirmed by one-dimensional nuclear overhauser effect spectroscopy (1D NOESY), high-resolution mass spectrometry (HRMS), isothermal titration calorimetry (ITC), and computational simulation. Our method opens a new strategy to detect biomarkers without target spots and provides a platform for surface plasmon resonance (SPR)-based sensors measuring small molecules.
Collapse
Affiliation(s)
- Jie Li
- Department of Chemistry, Paderborn University, Warburgerstraße 100, D-33098 Paderborn, Germany
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beisuanhuandonglu N.15, 100029 Beijing, China
| | - Baozhong Lü
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beisuanhuandonglu N.15, 100029 Beijing, China
| | - Maksim Rodin
- Department of Chemistry, Paderborn University, Warburgerstraße 100, D-33098 Paderborn, Germany
| | - Jan Paradies
- Department of Chemistry, Paderborn University, Warburgerstraße 100, D-33098 Paderborn, Germany
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beisuanhuandonglu N.15, 100029 Beijing, China
| | - Dirk Kuckling
- Department of Chemistry, Paderborn University, Warburgerstraße 100, D-33098 Paderborn, Germany
| |
Collapse
|
13
|
Wang J, Wang T, Liu X, Lu Y, Geng J. Multiple-responsive supramolecular vesicle based on azobenzene-cyclodextrin host-guest interaction. RSC Adv 2020; 10:18572-18580. [PMID: 35518297 PMCID: PMC9053703 DOI: 10.1039/d0ra02123g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple-responsive supramolecular vesicles have been successfully fabricated by the complexation between β-cyclodextrin (β-CD) and a pH/photo dual-responsive amphiphile 4-(4-(hexyloxy)phenylazo)benzoate sodium (HPB) with azobenzene and carboxylate groups. When mixing β-CD with HPB to reach a host/guest molar ratio of 1 : 1, the azobenzene group of HPB could be spontaneously included by β-CD molecules. Then, the formed inclusion complexes (HPB@β-CD) could self-assemble into vesicles, which was driven by the hydrophobic interaction of the alkyl chain of HPB and the hydrogen bonds between neighboring β-CDs. The reversible assembly/disassembly of the vesicles could be simply regulated under UV or visible light irradiation. The reversible phase transformation between vesicles and microbelts could also be realized by adjusting the pH values of the sample. Adding both competitive guest molecules (1-adamantane carboxylic acid sodium (ADA)) and α-amylase would result in the phase transformation from vesicles to micelles. Moreover, the vesicles would be destroyed when β-CD was continuously added until the ratio of host/guest reached 2 : 1. Such an interesting quintuple-responsive vesicle system reported here not only has potential applications in various fields such as controlled release or drug delivery, but also provides a reference for the design and construction of multiple responsive systems. A quintuple-responsive vesicle system was successfully fabricated by simply mixing HPB with an equal amount of β-CD.![]()
Collapse
Affiliation(s)
- Jiao Wang
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| | - Ting Wang
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| | - Xiaohui Liu
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| | - Yan Lu
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| | - Jingjing Geng
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| |
Collapse
|
14
|
Russell GM, Inamori D, Masai H, Tamaki T, Terao J. Luminescent and mechanical enhancement of phosphorescent hydrogel through cyclic insulation of platinum-acetylide crosslinker. Polym Chem 2019. [DOI: 10.1039/c9py00700h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An insulated Pt-acetylide complex was incorporated into a polymer network as a crosslinker to afford a phosphorescent gel.
Collapse
Affiliation(s)
- Go M. Russell
- Department of Basic Science
- Graduate School of Arts and Sciences
- The niversity of Tokyo
- Tokyo 153-8902
- Japan
| | - Daiki Inamori
- Department of Basic Science
- Graduate School of Arts and Sciences
- The niversity of Tokyo
- Tokyo 153-8902
- Japan
| | - Hiroshi Masai
- Department of Basic Science
- Graduate School of Arts and Sciences
- The niversity of Tokyo
- Tokyo 153-8902
- Japan
| | - Takashi Tamaki
- Department of Basic Science
- Graduate School of Arts and Sciences
- The niversity of Tokyo
- Tokyo 153-8902
- Japan
| | - Jun Terao
- Department of Basic Science
- Graduate School of Arts and Sciences
- The niversity of Tokyo
- Tokyo 153-8902
- Japan
| |
Collapse
|