1
|
Hassani F, Aroujalian A, Rashidi A. Robust and stable superhydrophilic MIL-101 (Cr)-coated copper mesh for highly efficient oil/water emulsion separation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30663-30675. [PMID: 38613752 DOI: 10.1007/s11356-024-32978-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 04/15/2024]
Abstract
In this study, dip coating method was investigated to prepare superhydrophilic MIL-101 (Cr)-coated copper mesh for highly efficient oil/water emulsion separation. To increase the surface area of synthesized MIL-101 (Cr), a purification procedure was developed to remove unreacted H2BDC crystals present in the channel of the initial MIL-101 (Cr) sample synthesized. After that, a dispersing solution of MIL-101 (Cr) was needed to coat on the copper mesh. Thermoplastic polyurethane (TPU) was used as a binder in this procedure. The prepared membranes of M1 (once coated mesh) to M6 (six times coated mesh) were performed to separate oil/water emulsion effectively. Contact angle tests showed the superhydrophilic/underwater superoleophobic wettability behavior of MIL-101 (Cr)-coated copper meshes. The wetting mechanism of the prepared membranes is mostly relevant to the surface functional groups of purified MIL-101 (Cr). Also, the roughness of the nanostructured coated membranes was improved because of the uniform coating of MIL-101 (Cr) which is integrated into hydrophilic TPU. Oil/water separation results showed that M2 (twice coated mesh) showed the maximum amount of water flux (83076 L m-2 h-1) in oil/water separation and M3 (three times coated mesh) had the best performance of oil/water emulsion with 99.99% separation efficiency.
Collapse
Affiliation(s)
- Fatemeh Hassani
- Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Abdolreza Aroujalian
- Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| |
Collapse
|
2
|
Li Z, Li X, Yang Y, Li Q, Gong J, Liu X, Liu B, Zheng G, Zhang S. Novel multifunctional environmentally friendly degradable zeolitic imidazolate frameworks@poly (γ-glutamic acid) hydrogel with efficient dye adsorption function. Int J Biol Macromol 2024; 261:129929. [PMID: 38311139 DOI: 10.1016/j.ijbiomac.2024.129929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Recently, metal-organic frameworks (MOFs) have been widely developed due to the rich porosity, excellent framework structure and multifunctional nature. Meanwhile, a series of MOFs crystals and MOF-based composites have been emerged. However, the widespread applications of MOFs are hindered by challenges such as rigidity, fragility, solution instability, and processing difficulties. In this study, we addressed these limitations by employing an in-situ green growth approach to prepare a zeolitic imidazolate frameworks-8@poly (γ-glutamic acid) hydrogel (ZIF-8@γ-PGA) with hierarchical structures. This innovative method effectively resolves the inherent issues associated with MOFs. Furthermore, the ZIF-8@γ-PGA hydrogel is utilized for dye adsorption, demonstrating an impressive maximum adsorption capacity of 1130 ± 1 mg/g for methylene blue (MB). The adsorption behavior exhibits an excellent agreement with both the kinetic model and isotherm. Meanwhile, because the adsorbent raw materials are all green non-toxic materials, multiple applications of materials can also be realized. Significantly, the results of antibacterial experiments showed that the ZIF-8@γ-PGA hydrogel after in-situ growth of ZIF-8 had better antibacterial properties. Thus, the ZIF-8@γ-PGA hydrogel has great potential for development in wound dressings, sustained drug owing to its biocompatibility and antibacterial activity.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Xiao Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Yuzhou Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Qiujin Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jixian Gong
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xiuming Liu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Bing Liu
- Ningxia Shenju Agricultural Technology Development Co., Ltd., Zhongwei 755001, PR China
| | - Guobao Zheng
- Agricultural Biotechnology Centre, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002
| | - Songnan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
3
|
Li Y, Wang J, Li H, Guo M, Sun X, Liu C, Yu C. MnO 2 Decorated Metal-Organic Framework-Based Hydrogel Relieving Tumor Hypoxia for Enhanced Photodynamic Therapy. Macromol Rapid Commun 2023; 44:e2300268. [PMID: 37402482 DOI: 10.1002/marc.202300268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
Photodynamic therapy (PDT) has emerged as a promising cancer treatment modality; however, its therapeutic efficacy is greatly limited by tumor hypoxia. In this study, a metal-organic framework (MOF)-based hydrogel (MOF Gel) system that synergistically combines PDT with the supply of oxygen is designed. Porphyrin-based Zr-MOF nanoparticles are synthesized as the photosensitizer. MnO2 is decorated onto the surface of the MOF, which can effectively convert H₂O₂ into oxygen. Simultaneously, the incorporation of MnO2 -decorated MOF (MnP NPs) into a chitosan hydrogel (MnP Gel) serves to enhance its stability and retention at the tumor site. The results show that this integrated approach significantly improves tumor inhibition efficiency by relieving tumor hypoxia and enhancing PDT. Overall, the findings underscore the potential for employing nano-MOF-based hydrogel systems as promising agents for cancer therapy, thus advancing the application of multifunctional MOFs in cancer treatment.
Collapse
Affiliation(s)
- Yifan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jian Wang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hanrong Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Miantong Guo
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyan Sun
- Department of Blood Transfusion, Anyang District Hospital of Puyang, Henan, 455000, China
| | - Chaoyong Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Lee J, Lee J, Kim JY, Kim M. Covalent connections between metal-organic frameworks and polymers including covalent organic frameworks. Chem Soc Rev 2023; 52:6379-6416. [PMID: 37667818 DOI: 10.1039/d3cs00302g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Hybrid composite materials combining metal-organic frameworks (MOFs) and polymers have emerged as a versatile platform for a broad range of applications. The crystalline, porous nature of MOFs and the flexibility and processability of polymers are synergistically integrated in MOF-polymer composite materials. Covalent bonds, which form between two distinct materials, have been extensively studied as a means of creating strong molecular connections to facilitate the dispersion of "hard" MOF particles in "soft" polymers. Numerous organic transformations have been applied to post-synthetically connect MOFs with polymeric species, resulting in a variety of covalently connected MOF-polymer systems with unique properties that are dependent on the characteristics of the MOFs, polymers, and connection modes. In this review, we provide a comprehensive overview of the development and strategies involved in preparing covalently connected MOFs and polymers, including recently developed MOF-covalent organic framework composites. The covalent bonds, grafting strategies, types of MOFs, and polymer backbones are summarized and categorized, along with their respective applications. We highlight how this knowledge can serve as a basis for preparing macromolecular composites with advanced functionality.
Collapse
Affiliation(s)
- Jonghyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jooyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jin Yeong Kim
- Department of Chemistry Education, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
5
|
Cui AQ, Wu XY, Ye JB, Song G, Chen DY, Xu J, Liu Y, Lai JP, Sun H. "Two-in-one" dual-function luminescent MOF hydrogel for onsite ultra-sensitive detection and efficient enrichment of radioactive uranium in water. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130864. [PMID: 36736214 DOI: 10.1016/j.jhazmat.2023.130864] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
In consideration of the severe hazards of radioactive uranium pollution and the growing demand of uranium resources, the novel sensor/adsorbent composite was creatively developed to integrate the dual functions for on-site detection of uranium contamination and efficient recovery of uranium resources. By hybridizing the luminescent 3D terbium (III) metal-organic framework (Tb-MOF) with sodium alginate (SA) gel using terbium (III) as cross-linker, the Tb-MOF/Tb-AG was fabricated with multi-luminescence centers and sufficient binding sites for uranium. Notably, the ultra-high sensitivity with detection limit as low as 1.2 ppt was achieved, which was 4 orders of magnitude lower than the uranium contamination standard in drinking water (USEPA) and even comparable to the sensitivity of the ICP-MS. Furthermore, the very wide quantification range (1.0 ×10-9-5.0 ×10-4 mol/L), remarkable adsorption capacity (549.0 mg/g) and outstanding anti-interference ability have been achieved without sophisticated sample preparation procedures. Applied in complex natural water samples from Uranium Tailings and the Pearl River, this method has shown good detection accuracy. The ultra high sensitivity and great adsorption capacity for uranium could be ascribed to the synergistic coordination, hydrogen bonding and ion exchange between uranium and Tb-MOF/Tb-AG. The mechanisms were explored by infrared spectroscopy, batch experiments, X-ray photoelectron studies and energy dispersive spectroscopic studies. In addition, the Tb-MOF/Tb-AG can be reused for uranium adsorption.
Collapse
Affiliation(s)
- An-Qi Cui
- College of Environmental Science & Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiao-Yi Wu
- College of Environmental Science & Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jun-Bin Ye
- College of Environmental Science & Engineering, Guangzhou University, Guangzhou 510006, China
| | - Gang Song
- College of Environmental Science & Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China
| | - Di-Yun Chen
- College of Environmental Science & Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China
| | - Jie Xu
- College of Environmental Science & Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yu Liu
- College of Environmental Science & Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jia-Ping Lai
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Hui Sun
- College of Environmental Science & Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| |
Collapse
|
6
|
Shi S, Zhang P, Chu X, Xu W, Song Q, Liu Y, Feng W, Sun B, Wang J, Zhou N. Hydrophilic Nanocomposite Films with a Fence-Structure-Induced Labyrinth Effect for Greenhouse Cooling and Light Enhancement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10679-10689. [PMID: 35969813 DOI: 10.1021/acs.langmuir.2c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, we reported a new kind of cooling and light-enhanced hydrophilic nanocomposite film (PE/JW-0.8%) with low-density polyethylene (LDPE) as the substrate. The wetting, photophysical, and mechanical properties of PE/JW-0.8% were tested. The emission band of the fluorescence centers at 420 nm, which is perfectly consistent with the absorption spectrum of plant photosynthesis. In addition, light can be scattered by PE/JW-0.8% to achieve a larger light distribution area. PE/JW-0.8% showed a good durability of hydrophilicity in the water rinsing test. Meanwhile, the elongation at the break of the film was significantly increased. Benefiting from the fence structure induced labyrinth effect, a maximum reduction of 6.7 °C in temperature monitoring for PE/JW-0.8% was observed in the detailed field experiments. Light intensity monitoring showed that light intensity in PE/JW-0.8% increased by a maximum of 57.1% compared to PE/LH. In the biological quality analysis of melon, it was found that the soluble sugar, soluble solid, and vitamin C content of melon increased by 13.34, 22.96, and 50.95%, respectively. In conclusion, these results confirm that PE/JW-0.8% has great application potential in the field of facility agriculture, buildings, and photovoltaic modules.
Collapse
Affiliation(s)
- Shaoze Shi
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Pan Zhang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Xiaohong Chu
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Wang Xu
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Qiuxian Song
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Yihan Liu
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Wenli Feng
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Baohong Sun
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Jia Wang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
- Nanjing Zhou Ninglin Advanced Materials Technology Company Limited, Nanjing 211505, China
| |
Collapse
|
7
|
|