1
|
Tevet S, Amir RJ. Hydrophobicity as a tool for programming sequential mesophase transitions of enzyme-responsive polymeric amphiphiles. J Mater Chem B 2024; 12:11685-11695. [PMID: 39385664 DOI: 10.1039/d4tb01587h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The ability of polymeric assemblies to undergo programmable cascades of mesophase transitions is prevalent in many systems in nature, where structural and functional features are tightly bound to maximize activity. In this study, we have examined the ability to program the mesophase transition rates of co-assembled enzyme-responsive polymeric micelles, through fine adjustments of the hydrophobicity of their amphiphilic components. We have utilized the different reactivities of di- and tri-block amphiphiles toward enzymatic degradation as a tool for programming formulations to undergo sequential enzymatically induced transitions from micelles to hydrogels and finally to dissolved polymers. By varying the aliphatic end-groups of PEG-dendron di-block and tri-block amphiphiles, we could demonstrate the remarkable impact of minor modifications to the di-block amphiphiles' structure and hydrophobicity on the transition rates between the different mesophases, ranging from a few hours to a week. Additionally, the study reveals how altering the relative hydrophobicity of its amphiphilic components influences the formulation ratio and enzymatic selectivity, as well as the stability and degradation rate of the resulting hydrogels. The findings underscore the importance of molecular architecture and hydrophobicity as key parameters in the design of programmable enzyme-responsive polymeric assemblies, offering insights into the ability to precisely control multi-step mesophase transitions for tailored functionality.
Collapse
Affiliation(s)
- Shahar Tevet
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- The Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv, Israel
- ADAMA Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv, Israel
| | - Roey J Amir
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- The Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv, Israel
- ADAMA Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
2
|
Roy D, Naskar B, Bala T. Effect of Hofmeister Anions Series on the Langmuir Film of Tetronic 90R4 and Tetronic 701 Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20927-20937. [PMID: 39314080 DOI: 10.1021/acs.langmuir.4c01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The air-water interfacial behavior of Tetronic 90R4 and Tetronic 701 was studied in the presence of sodium salts with different anions namely PO 4 3 - , SO 4 2 - , MoO 4 2 - , WO 4 2 - , Cl-, Br-, NO 3 - , I-, and SCN-. Their presence in the subphase altered the arrangement of both tetronic molecules at the air-water interface. The limiting mean molecular area of the Langmuir film for both tetronics was found to be ion specific; it increased following the series PO 4 3 - < SO 4 2 - < MoO 4 2 - < WO 4 2 - < Cl-< Br-< NO 3 - < I-< SCN-, which was found to be aligned with the Hofmeister series of anions. Furthermore, the study explored the effects of the hydration enthalpy, free energy, viscosity BJD coefficient, and polarizability of these anions on the interfacial behavior of tetronics. The Langmuir-Blodgett film morphology was also examined in the presence of these salt species using SEM. Morphologies were explained considering kosmotropic and chaotropic nature of these anions.
Collapse
Affiliation(s)
- Dipali Roy
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Bappaditya Naskar
- Department of Chemistry, Sundarban Hazi Desarat College, Pathankhali 743611, India
| | - Tanushree Bala
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
3
|
Rathee P, Edelstein-Pardo N, Koren G, Beck R, Amir RJ. Cascade Mesophase Transitions of Multi-enzyme Responsive Polymeric Formulations. Biomacromolecules 2024; 25:3607-3619. [PMID: 38776179 PMCID: PMC11170936 DOI: 10.1021/acs.biomac.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024]
Abstract
Studying how synthetic polymer assemblies respond to sequential enzymatic stimuli can uncover intricate interactions in biological systems. Using amidase- and esterase-responsive PEG-based diblock (DBA) and triblock amphiphiles (TBAs), we created two distinct formulations: amidase-responsive DBA with esterase-responsive TBA and vice versa. We studied their cascade responses to the two enzymes and the sequence of their introduction. These formulations underwent cascade mesophase transitions upon the addition of the DBA-degrading enzyme, transitioning from (i) coassembled micelles to (ii) triblock-based hydrogel, and ultimately to (iii) dissolved polymers when exposed to the TBA hydrolyzing enzyme. The specific pathway of the two mesophase transitions depended on the compositions of the formulations and the enzyme introduction sequence. The results highlight the potential for designing polymeric formulations with programmable multistep enzymatic responses, mimicking the complex behavior of biological macromolecules.
Collapse
Affiliation(s)
- Parul Rathee
- School
of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
| | - Nicole Edelstein-Pardo
- School
of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
| | - Gil Koren
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- School
of Physics and Astronomy, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roy Beck
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- School
of Physics and Astronomy, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roey J. Amir
- School
of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- ADAMA
Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Wang M, Bennett ZT, Singh P, Feng Q, Wilhelm J, Huang G, Gao J. Elucidation of Protonation Cooperativity of a STING-Activating Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305255. [PMID: 37541432 PMCID: PMC10838353 DOI: 10.1002/adma.202305255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/23/2023] [Indexed: 08/06/2023]
Abstract
Stimuli-responsive nanomaterials have the potential to improve the performance and overcome existing barriers of conventional nanotherapeutics. Molecular cooperativity design in stimuli-responsive nanomedicine can amplify physiological signals, enabling a cooperative response for improved diagnostic and therapeutic precision. Previously, this work reported an ultra-pH-sensitive polymer, PEG-b-PC7A, that possesses innate immune activating properties by binding to the stimulator of interferon genes (STING) through polyvalent phase condensation. This interaction enhances STING activation and synergizes with the endogenous STING ligand for robust cancer immunotherapy. Despite its successes in innate immune activation, the fundamental physicochemical and pH-responsive properties of PC7A require further investigation. Here, this study elucidates the protonation cooperativity driven by the phase transition of PC7A copolymer. The highly cooperative system displays an "all-or-nothing" proton distribution between highly charged unimer (all) and neutral micelle (nothing) states without gradually protonated intermediates. The binary protonation behavior is further illustrated in pH-precision-controlled release of a representative anticancer drug, β-lapachone, by PC7A micelles over a noncooperative PE5A polymer. Furthermore, the bimodal distribution of protons is represented by a high Hill coefficient (nH > 9), featuring strong positive cooperativity. This study highlights the nanoscale pH cooperativity of an immune activating polymer, providing insights into the physicochemical characterization and design parameters for future nanotherapeutics development.
Collapse
Affiliation(s)
- Maggie Wang
- Department of Biomedical Engineering, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zachary T Bennett
- Department of Biomedical Engineering, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Parnavi Singh
- Department of Biomedical Engineering, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qiang Feng
- Department of Biomedical Engineering, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jonathan Wilhelm
- Department of Biomedical Engineering, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gang Huang
- Department of Biomedical Engineering, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jinming Gao
- Department of Biomedical Engineering, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
5
|
Han B, Zhang Y, Chen S, Zhao M, Li N, Li W, Zhu L. Preparation of Axially Grafted Temperature-Responsive Chiral Salen Mn III and Application in Asymmetric Epoxidation of Olefins in Water. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
6
|
Jimaja S, Varlas S, Foster JC, Taton D, Dove AP, O'Reilly RK. Stimuli-responsive and core cross-linked micelles developed by NiCCo-PISA of helical poly(aryl isocyanide)s. Polym Chem 2022; 13:4047-4053. [PMID: 35923350 PMCID: PMC9274662 DOI: 10.1039/d2py00397j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/12/2022] [Indexed: 12/03/2022]
Abstract
We report the synthesis of redox- and pH-sensitive block copolymer micelles that contain chiral cores composed of helical poly(aryl isocyanide)s. Pentafluorophenyl (PFP) ester-containing micelles synthesised via nickel-catalysed coordination polymerisation-induced self-assembly (NiCCo-PISA) of helical poly(aryl isocyanide) amphiphilic diblock copolymers are modified post-polymerisation with various diamines to introduce cross-links and/or achieve stimulus-sensitive nanostructures. The successful introduction of the diamines is confirmed by Fourier-transform infrared spectroscopy (FT-IR), while the stabilisation effect of the cross-linking is explored by dynamic light scattering (DLS). The retention of the helicity of the core-forming polymer block is verified by circular dichroism (CD) spectroscopy and the stimuli-responsiveness of the nanoparticles towards a reducing agent (l-glutathione, GSH) and pH is evaluated by following the change in the size of the nanoparticles by DLS. These stimuli-responsive nanoparticles could find use in applications such as drug delivery, nanosensors or biological imaging.
Collapse
Affiliation(s)
- Sètuhn Jimaja
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- School of Chemistry, University of Birmingham Edgbaston B15 2TT UK
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux/CNRS École Nationale Supérieure de Chimie, de Biologie & de Physique 33607 Cedex Pessac France
| | - Spyridon Varlas
- School of Chemistry, University of Birmingham Edgbaston B15 2TT UK
| | - Jeffrey C Foster
- School of Chemistry, University of Birmingham Edgbaston B15 2TT UK
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux/CNRS École Nationale Supérieure de Chimie, de Biologie & de Physique 33607 Cedex Pessac France
| | - Andrew P Dove
- School of Chemistry, University of Birmingham Edgbaston B15 2TT UK
| | | |
Collapse
|
7
|
Deb Roy JS, Chowdhury D, Sanfui MH, Hassan N, Mahapatra M, Ghosh NN, Majumdar S, Chattopadhyay PK, Roy S, Singha NR. Ratiometric pH Sensing, Photophysics, and Cell Imaging of Nonaromatic Light-Emitting Polymers. ACS APPLIED BIO MATERIALS 2022; 5:2990-3005. [PMID: 35579235 DOI: 10.1021/acsabm.2c00297] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Here, four nontraditional fluorescent polymers (NTFPs) of varying N,N-dimethyl-2-propenamide (DMPA) and butyl prop-2-enoate (BPE) mole ratios, i.e., 2:1 (NTFP1), 4:1 (NTFP2), 8:1 (NTFP3), and 16:1 (NTFP4), are prepared via random polymerization in water. The maximum fluorescence enhancement of NTFP3 makes it suitable for ratiometric pH sensing, Cu(II) sensing, and pH-dependent cell imaging of Madin-Darby canine kidney (MDCK) cells. The oxygen donor functionalities of NTFP3 involved in binding and sensing with Cu(II) ions are studied by absorption, emission, electron paramagnetic resonance, Fourier transform infrared (FTIR), and O1s/Cu2p X-ray photoelectron spectroscopies (XPS). The spectral responses of the ratiometric pH sensor within 1.5-11.5 confirm 22 and 44 nm red shifts in absorption and ratiometric emission, respectively. The striking color changes from blue (436 nm) to green (480 nm) via an increase in pH are thought to be the stabilization of the charged canonical form of tertiary amide, i.e., -C(O-)═N+(CH3)2, realized from the changes in the absorption/fluorescence spectra and XPS/FTIR analyses. The through-space n-π* interactions in the NTFP3 aggregate, N-branching-associated rigidity, and nonconventional intramolecular hydrogen bondings of adjacent NTFP3 moieties in the NTFP3 aggregate contribute to aggregation-enhanced emissions (AEEs). Here, structures of NTFP3, NTFP3 aggregate, and Cu(II)-NTFP3; absorption; n-π* interactions; hydrogen bondings; AEEs; and binding with Cu(II) are ascertained by density functional theory, time-dependent density functional theory, and reduced density gradient calculations. The excellent limits of detection and Stern-Volmer constants of NTFP3 are 2.24 nM/0.14234 ppb and 4.26 × 103 M-1 at pH = 6.5 and 0.95 nM/0.06037 ppb and 4.90 × 103 M-1 at pH = 8.0, respectively. Additionally, the Stokes shift and binding energy of NTFP3 are 13,636 cm-1/1.69 eV and -4.64 eV, respectively. The pH-dependent MDCK cell imaging ability of noncytotoxic NTFP3 is supported via fluorescence imaging and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.
Collapse
Affiliation(s)
- Joy Sankar Deb Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Md Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Nadira Hassan
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Narendra Nath Ghosh
- Department of Chemistry, University of Gour Banga, Mokdumpur, Malda, West Bengal 732103, India
| | - Swapan Majumdar
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala 799022, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Subhasis Roy
- Department of Chemical Engineering, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| |
Collapse
|
8
|
Akar I, Foster JC, Leng X, Pearce AK, Mathers RT, O’Reilly RK. Log Poct/SA Predicts the Thermoresponsive Behavior of P(DMA- co-RA) Statistical Copolymers. ACS Macro Lett 2022; 11:498-503. [PMID: 35575334 PMCID: PMC9022432 DOI: 10.1021/acsmacrolett.1c00776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Polymers that exhibit
a lower critical solution temperature (LCST)
have been of great interest for various biological applications such
as drug or gene delivery, controlled release systems, and biosensing.
Tuning the LCST behavior through control over polymer composition
(e.g., upon copolymerization of monomers with different hydrophobicity)
is a widely used method, as the phase transition is greatly affected
by the hydrophilic/hydrophobic balance of the copolymers. However,
the lack of a general method that relates copolymer hydrophobicity
to their temperature response leads to exhaustive experiments when
seeking to obtain polymers with desired properties. This is particularly
challenging when the target copolymers are comprised of monomers that
individually form nonresponsive homopolymers, that is, only when copolymerized
do they display thermoresponsive behavior. In this study, we sought
to develop a predictive relationship between polymer hydrophobicity
and cloud point temperature (TCP). A series
of statistical copolymers were synthesized based on hydrophilic N,N-dimethyl acrylamide (DMA) and hydrophobic
alkyl acrylate monomers, and their hydrophobicity was compared using
surface area-normalized octanol/water partition coefficients (Log Poct/SA). Interestingly, a correlation between
the Log Poct/SA of the copolymers and
their TCPs was observed for the P(DMA-co-RA) copolymers, which allowed TCP prediction of a demonstrative copolymer P(DMA-co-MMA). These results highlight the strong potential of this computational
tool to improve the rational design of copolymers with desired temperature
responses prior to synthesis.
Collapse
Affiliation(s)
- Irem Akar
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jeffrey C. Foster
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Xiyue Leng
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Amanda K. Pearce
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Robert T. Mathers
- Department of Chemistry, Pennsylvania State University, New Kensington, Pennsylvania 15068, United States
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
9
|
Gontier A, Renou F, Colombani O, Burel F, Morandi G. Hybridization of Poly(oxazoline) and Poly(ethylene oxide)-Based Amphiphilic Copolymers into Thermosensitive Mixed Micelles of Tunable Cloud Point. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11447-11456. [PMID: 34559542 DOI: 10.1021/acs.langmuir.1c01145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper reports the development in aqueous solution of mixed micelles of tunable cloud point temperature through blending in various proportions of two copolymers of different chemical natures. For that purpose, a lipid-b-poly(2-isopropyl-2-oxazoline) (lipid-b-P(iPrOx)) copolymer, self-assembling into thermosensitive micelles that phase-separate above a cloud point temperature of 38 °C, was blended in various proportions with commercial C18-b-PEOx. The latter was constituted of a hydrophobic saturated C18 chain and a hydrophilic poly(ethylene oxide) (PEO) block with varying polymerization degrees (x) and does not have any thermosensitive properties on the studied temperature range for any value of x. The different blends were thoroughly characterized by light scattering and UV-visible spectroscopy, revealing that hybridization between both copolymers always occurred, independent of the PEO block length. The resulting mixed micelles present TCP values progressively increasing with the C18-b-PEOx proportion, from 38 to 61 °C. This study demonstrates the relevance of the blending approach to tune the phase separation of micellar systems by formulation rather than by more tedious synthetic efforts. Shifting TCP through this approach extends the range of temperature where lipid-b-P(iPrOx) can find an application.
Collapse
Affiliation(s)
- Alice Gontier
- Normandie Univ, INSA Rouen, Univ Rouen, CNRS, PBS 76000, Rouen, France
| | - Frédéric Renou
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen 72085,Le Mans Cedex 9, France
| | - Olivier Colombani
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen 72085,Le Mans Cedex 9, France
| | - Fabrice Burel
- Normandie Univ, INSA Rouen, Univ Rouen, CNRS, PBS 76000, Rouen, France
| | - Gaëlle Morandi
- Normandie Univ, INSA Rouen, Univ Rouen, CNRS, PBS 76000, Rouen, France
| |
Collapse
|
10
|
Miclotte MJ, Lawrenson SB, Varlas S, Rashid B, Chapman E, O’Reilly RK. Tuning the Cloud-Point and Flocculation Temperature of Poly(2-(diethylamino)ethyl methacrylate)-Based Nanoparticles via a Postpolymerization Betainization Approach. ACS POLYMERS AU 2021; 1:47-58. [PMID: 34476421 PMCID: PMC8389998 DOI: 10.1021/acspolymersau.1c00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 11/28/2022]
Abstract
The ability to tune the behavior of temperature-responsive polymers and self-assembled nanostructures has attracted significant interest in recent years, particularly in regard to their use in biotechnological applications. Herein, well-defined poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA)-based core-shell particles were prepared by RAFT-mediated emulsion polymerization, which displayed a lower-critical solution temperature (LCST) phase transition in aqueous media. The tertiary amine groups of PDEAEMA units were then utilized as functional handles to modify the core-forming block chemistry via a postpolymerization betainization approach for tuning both the cloud-point temperature (T CP) and flocculation temperature (T CFT) of these particles. In particular, four different sulfonate salts were explored aiming to investigate the effect of the carbon chain length and the presence of hydroxyl functionalities alongside the carbon spacer on the particle's thermoresponsiveness. In all cases, it was possible to regulate both T CP and T CFT of these nanoparticles upon varying the degree of betainization. Although T CP was found to be dependent on the type of betainization reagent utilized, it only significantly increased for particles betainized using sodium 3-chloro-2-hydroxy-1-propanesulfonate, while varying the aliphatic chain length of the sulfobetaine only provided limited temperature variation. In comparison, the onset of flocculation for betainized particles varied over a much broader temperature range when varying the degree of betainization with no real correlation identified between T CFT and the sulfobetaine structure. Moreover, experimental results were shown to partially correlate to computational oligomer hydrophobicity calculations. Overall, the innovative postpolymerization betainization approach utilizing various sulfonate salts reported herein provides a straightforward methodology for modifying the thermoresponsive behavior of soft polymeric particles with potential applications in drug delivery, sensing, and oil/lubricant viscosity modification.
Collapse
Affiliation(s)
- Matthieu
P. J. Miclotte
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Stefan B. Lawrenson
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Spyridon Varlas
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Bilal Rashid
- BP
Exploration Operating Company Ltd., Chertsey Road, Sunbury-on-Thames,
Middlesex TW16 7LN, United
Kingdom
| | - Emma Chapman
- BP
Exploration Operating Company Ltd., Chertsey Road, Sunbury-on-Thames,
Middlesex TW16 7LN, United
Kingdom
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom,
| |
Collapse
|
11
|
Hershberger KK, Gauger AJ, Bronstein LM. Utilizing Stimuli Responsive Linkages to Engineer and Enhance Polymer Nanoparticle-Based Drug Delivery Platforms. ACS APPLIED BIO MATERIALS 2021; 4:4720-4736. [PMID: 35007022 DOI: 10.1021/acsabm.1c00351] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The devastating nature of cancer continues to be one of the leading causes of death in the world. Chemotherapy is among the most common forms of cancer treatment but comes with a host of adverse effects caused by the therapeutic agents damaging healthy tissue and organs. To limit these side effects, scientists have been designing stimuli responsive drug delivery vessels for targeted release. This Review focuses on the incorporation of stimuli responsive linkages in targeted drug delivery systems to enhance therapeutic efficiency. These platforms are primarily employed to control the distribution of anticancer agents in the body to reduce the adverse side effects caused by their toxicities. We will outline how drug delivery vessels are constructed so that exposure to select environmental and external stimuli releases the enclosed drug only at the target site. Stimuli responsive components are integrated within drug delivery vessels in the form of cross-linkers, polymers, and surface modifications. The changes, these moieties undergo upon stimuli exposure, cascade into larger scale alterations to the platforms, resulting in complete disassembly, reversible morphological variations, and enhanced cellular uptake. The ability for these modes of delivery to be initiated exclusively under stimuli exposure allows for release of toxic therapeutic agents to be confined only to the affected area.
Collapse
Affiliation(s)
- Kian K Hershberger
- Indiana University, Department of Chemistry, Bloomington, 800 East Kirkwood Avenue, Indiana 47405, United States
| | - Andrew J Gauger
- Indiana University, Department of Chemistry, Bloomington, 800 East Kirkwood Avenue, Indiana 47405, United States
| | - Lyudmila M Bronstein
- Indiana University, Department of Chemistry, Bloomington, 800 East Kirkwood Avenue, Indiana 47405, United States.,A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow, 119991 Russia.,King Abdulaziz University, Faculty of Science, Department of Physics, P.O. Box 80303, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Xu S, Trujillo FJ, Xu J, Boyer C, Corrigan N. Influence of Molecular Weight Distribution on the Thermoresponsive Transition of Poly(N-isopropylacrylamide). Macromol Rapid Commun 2021; 42:e2100212. [PMID: 34121259 DOI: 10.1002/marc.202100212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/09/2021] [Indexed: 11/10/2022]
Abstract
A series of poly(N-isopropylacrylamide) (PNIPAm) homopolymers with narrow molecular weight distributions (MWDs) is prepared via photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The thermal transition temperature of these polymer samples is analyzed via turbidity measurements in water/N,N'-dimethylformamide mixtures, which show that the cloud point temperatures are inversely proportional to the weight average molecular weight (Mw ). Binary mixtures of the narrowly distributed PNIPAm samples are also prepared and the statistical parameters for the MWDs of these blends are determined. Very interestingly, for binary blends of the PNIPAm samples, the thermoresponsive transition is not only dependent on the Mw , which has been shown previously, but also on higher order statistical parameters of the MWDs. Specifically, at very high values of skewness and kurtosis, the polymer blends deviate from a single sharp thermoresponsive transition toward a broader thermal response, and eventually to a regime of two more distinct transitions. This work highlights the importance of in-depth characterization of polymer MWDs for thermoresponsive polymers.
Collapse
Affiliation(s)
- Sihao Xu
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Francisco J Trujillo
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
13
|
Li T, Wang W, Wang S, Liu L, Chang W, Li J. Thermo‐responsive block copolymer
micelle‐supported
(
S
)‐α,
α‐diphenylprolinol
trimethylsilyl ether for asymmetric Michael addition of nitroalkenes and aldehydes in water. J Appl Polym Sci 2021. [DOI: 10.1002/app.49831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tao Li
- The State Key Laboratory and Institute of Elemento‐Organic Chemistry College of Chemistry, Nankai University Tianjin China
- Center for Joint Surgery, Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Weilin Wang
- The State Key Laboratory and Institute of Elemento‐Organic Chemistry College of Chemistry, Nankai University Tianjin China
| | - Songmeng Wang
- The State Key Laboratory and Institute of Elemento‐Organic Chemistry College of Chemistry, Nankai University Tianjin China
| | - Lingyan Liu
- The State Key Laboratory and Institute of Elemento‐Organic Chemistry College of Chemistry, Nankai University Tianjin China
| | - Weixing Chang
- The State Key Laboratory and Institute of Elemento‐Organic Chemistry College of Chemistry, Nankai University Tianjin China
| | - Jing Li
- The State Key Laboratory and Institute of Elemento‐Organic Chemistry College of Chemistry, Nankai University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin China
| |
Collapse
|
14
|
Akar I, Keogh R, Blackman LD, Foster JC, Mathers RT, O’Reilly RK. Grafting Density Governs the Thermoresponsive Behavior of P(OEGMA- co-RMA) Statistical Copolymers. ACS Macro Lett 2020; 9:1149-1154. [PMID: 32850193 PMCID: PMC7441494 DOI: 10.1021/acsmacrolett.0c00461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023]
Abstract
Thermoresponsive copolymers that exhibit a lower critical solution temperature (LCST) have been exploited to prepare stimuli-responsive materials for a broad range of applications. It is well understood that the LCST of such copolymers can be controlled by tuning molecular weight or through copolymerization of two known thermoresponsive monomers. However, no general methodology has been established to relate polymer properties to their temperature response in solution. Herein, we sought to develop a predictive relationship between polymer hydrophobicity and cloud point temperature (T CP). A series of statistical copolymers were synthesized based on hydrophilic oligoethylene glycol monomethyl ether methacrylate (OEGMA) and hydrophobic alkyl methacrylate monomers and their hydrophobicity was compared using surface area-normalized partition coefficients (log P oct/SA). However, while some insight was gained by comparing T CP and hydrophobicity values, further statistical analysis on both experimental and literature data showed that the molar percentage of comonomer (i.e., grafting density) was the strongest influencer of T CP, regardless of the comonomer used. The lack of dependence of T CP on comonomer chemistry implies that a broad range of functional, thermoresponsive materials can be prepared based on OEGMA by simply tuning grafting density.
Collapse
Affiliation(s)
- Irem Akar
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Robert Keogh
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- Department of Chemistry, University of
Warwick, Gibbet Hill
Road, Coventry, CV4 7AL, United Kingdom
| | - Lewis D. Blackman
- Department of Chemistry, University of
Warwick, Gibbet Hill
Road, Coventry, CV4 7AL, United Kingdom
| | - Jeffrey C. Foster
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Robert T. Mathers
- Department of Chemistry, Pennsylvania State University, New Kensington, Pennsylvania 15068, United States
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
15
|
Luo GF, Chen WH, Zhang XZ. 100th Anniversary of Macromolecular Science Viewpoint: Poly( N-isopropylacrylamide)-Based Thermally Responsive Micelles. ACS Macro Lett 2020; 9:872-881. [PMID: 35648534 DOI: 10.1021/acsmacrolett.0c00342] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm)-based thermally responsive micelles are of great importance as smart materials for a number of applications such as drug delivery and biosensing, owing to their tunable lower critical solution temperature (LCST). Their design and synthesis in the nanoscale size range have been widely studied, and research interest in their structural and physic-chemical properties is continually growing. In this Viewpoint, representative research on the construction of PNIPAAm-based thermally responsive micelles as well as their applications are highlighted and discussed, which would serve as a good start for newcomers in this field and a positive guide for future research.
Collapse
Affiliation(s)
- Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|