1
|
Bui AH, Fernando Pulle AD, Micallef AS, Lessard JJ, Tuten BT. Dynamic Chalcogen Squares for Material and Topological Control over Macromolecules. Angew Chem Int Ed Engl 2024; 63:e202404474. [PMID: 38453652 DOI: 10.1002/anie.202404474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Herein we introduce chalcogen squares via selenadiazole motifs as a new class of dynamic supramolecular bonding interactions for the modification and control of soft matter materials. We showcase selenadiazole motifs in supramolecular networks of varying primary chain length prepared through polymerization using tandem step-growth/Passerini multicomponent reactions (MCRs). Compared to controls lacking the selenadiazole motif, these networks display increased glass transition temperatures and moduli due to the chalcogen bonding linkages formed between chains. These elastomeric networks were shown to autonomously heal at room temperature, retaining up to 83 % of the ultimate tensile strength. Lastly, we use post-polymerization modification via the Biginelli MCR to add selenadiazole motifs to narrowly dispersed polymers for controlled topology in solution. Chalcogen squares via selenadiazoles introduce an exciting exchange mechanism to the realm of dynamic materials.
Collapse
Affiliation(s)
- Aaron H Bui
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Anne D Fernando Pulle
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Aaron S Micallef
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Jacob J Lessard
- Beckman Institute for Advanced Science and Technology, Department of Chemistry, University of Illinois Urbana, Champaign Urbana, Illinois, 61801, United States of America
| | - Bryan T Tuten
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
2
|
Lamberink-Ilupeju JW, Willans MJ, Gilroy JB, Noël JJ, Blacquiere JM, Ragogna PJ. Multicomponent Synthesis of Poly(α-aminophosphine chalcogenide)s and Subsequent Depolymerization. Inorg Chem 2023; 62:15104-15109. [PMID: 37678149 DOI: 10.1021/acs.inorgchem.3c02039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Multicomponent reactions of primary phosphines (R-PH2), diimines (R'-N═C(H)-R-(H)C═N-R'), and chalcogens (O2, S8) generate poly(α-aminophosphine chalcogenide)s (4-7) through step-growth polymerization. Characterization of the linear polymers using 31P{1H} diffusion-ordered NMR spectroscopy (DOSY) experiments aided in determining the molecular weight (Mw) of the material. Subjecting the polyphosphine oxide or sulfide to reducing conditions in the presence of a Lewis acid resulted in complete depolymerization of the polymers, quantitatively releasing the 1° phosphine and diimine (2) starting materials, with concomitant reduction of diimine to diamine (9).
Collapse
Affiliation(s)
| | - Mathew J Willans
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 587, Canada
| | - Joe B Gilroy
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 587, Canada
| | - James J Noël
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 587, Canada
- Surface Science Western, The University of Western Ontario, London, Ontario N6G 0J3, Canada
| | - Johanna M Blacquiere
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 587, Canada
| | - Paul J Ragogna
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 587, Canada
- Surface Science Western, The University of Western Ontario, London, Ontario N6G 0J3, Canada
| |
Collapse
|
3
|
Zheng N, Gao H, Jiang Z, Song W. Multicomponent polymerization of sulfur, chloroform and diamine toward polythiourea. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Ren L, Wang Q. Concurrent Construction of C═C and C≡C Linkages in Organic and Polymerization Reactions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Limei Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Qi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
5
|
Wang C, Yu B, Li W, Zou W, Cong H, Shen Y. Effective strategy for polymer synthesis: multicomponent reactions and click polymerization. MATERIALS TODAY CHEMISTRY 2022; 25:100948. [DOI: 10.1016/j.mtchem.2022.100948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
6
|
Peng J, Zheng N, Shen P, Zhao Z, Hu R, Tang BZ. Room temperature polymerizations of selenium and alkynones for the regioselective synthesis of poly(1,4-diselenin)s or polyselenophenes. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Hoang MT, Yang Y, Tuten B, Wang H. Are Metal Halide Perovskite Solar Cells Ready for Space Applications? J Phys Chem Lett 2022; 13:2908-2920. [PMID: 35333532 DOI: 10.1021/acs.jpclett.2c00386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The appeal of metal halide perovskite solar cells (PSCs) has been widely demonstrated in the field of photovoltaic technology. On account of the excellent optical and electrical properties, as well as compatibility with flexible substrates, the PSCs also hold the highest record of specific power for lightweight solar cell devices, suggesting excellent promise in space applications. Hence, there is increasing interest in the performance of PSCs in space environments where radiation beams and thermal cycling can cause extreme stress on the devices. In this Perspective, we provide a brief summary of the research on PSCs for space applications. The radiation tolerance and thermal stability of PSCs and the fundamental mechanisms are discussed and analyzed. Key challenges facing PSC technology toward future space applications are demonstrated. This Perspective features the prospect of PSCs as the next frontier in space PV technology.
Collapse
Affiliation(s)
- Minh Tam Hoang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yang Yang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Bryan Tuten
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Hongxia Wang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
8
|
Liu H, Kanjilal P, Thayumanavan S. Self‐assembly of polymers from multicomponent reactions. POLYM INT 2022. [DOI: 10.1002/pi.6352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hongxu Liu
- Department of Chemistry University of Massachusetts Amherst Amherst MA USA
| | - Pintu Kanjilal
- Department of Chemistry University of Massachusetts Amherst Amherst MA USA
| | - S Thayumanavan
- Department of Chemistry University of Massachusetts Amherst Amherst MA USA
| |
Collapse
|
9
|
Alkan B, Daglar O, Luleburgaz S, Gungor B, Gunay US, Hizal G, Tunca U, Durmaz H. One-pot cascade polycondensation and Passerini three-component reactions for the synthesis of functional polyesters. Polym Chem 2022. [DOI: 10.1039/d1py01528a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A one-pot cascade four-component polymerization and post-polymerization modification reaction is introduced to synthetic polymer chemistry.
Collapse
Affiliation(s)
- Burcu Alkan
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
- Yalova Vocational School, University of Yalova, 77200 Yalova, Turkey
| | - Ozgun Daglar
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Serter Luleburgaz
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Begum Gungor
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Ufuk Saim Gunay
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Gurkan Hizal
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Umit Tunca
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Hakan Durmaz
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
10
|
Windbiel JT, Llevot A. Microgel Preparation by Miniemulsion Polymerization of Passerini Multicomponent Reaction Derived Acrylate Monomers. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julian Tobias Windbiel
- Karlsruhe Institute of Technology (KIT), Laboratory of Applied Chemistry Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Eggenstein‐Leopoldshafen 76344 Germany
| | - Audrey Llevot
- Bordeaux INP University of Bordeaux, Laboratoire de Chimie des Polymères Organiques UMR 5629, ENSCBP, 16 avenue Pey‐Berland, F‐33607 Pessac cedex France
| |
Collapse
|
11
|
Liu G, Xu Z, Dai X, Zeng Y, Wei Y, He X, Yan LT, Tao L. De Novo Design of Entropy-Driven Polymers Resistant to Bacterial Attachment via Multicomponent Reactions. J Am Chem Soc 2021; 143:17250-17260. [PMID: 34618447 DOI: 10.1021/jacs.1c08332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nonbactericidal polymers that prevent bacterial attachment are important for public health, environmental protection, and avoiding the generation of superbugs. Here, inspired by the physical bactericidal process of carbon nanotubes and graphene derivatives, we develop nonbactericidal polymers resistant to bacterial attachment by using multicomponent reactions (MCRs) to introduce molecular "needles" (rigid aliphatic chains) and molecular "razors" (multicomponent structures) into polymer side chains. Computer simulation reveals the occurrence of spontaneous entropy-driven interactions between the bacterial bilayers and the "needles" and "razors" in polymer structures and provides guidance for the optimization of this type of polymers for enhanced resistibility to bacterial attachment. The blending of the optimized polymer with commercially available polyurethane produces a film with remarkably superior stability of the resistance to bacterial adhesion after wear compared with that of commercial mobile phone shells made by the Sharklet technology. This proof-of-concept study explores entropy-driven polymers resistant to bacterial attachment via a combination of MCRs, computer simulation, and polymer chemistry, paving the way for the de novo design of nonbactericidal polymers to prevent bacterial contamination.
Collapse
Affiliation(s)
- Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ziyang Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
12
|
Geiselhart CM, Mutlu H, Barner-Kowollik C. Passerini Multicomponent Reactions Enabling Self-Reporting Photosensitive Tetrazole Polymers. ACS Macro Lett 2021; 10:1159-1166. [PMID: 35549082 DOI: 10.1021/acsmacrolett.1c00280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We introduce the synthesis of photosensitive tetrazole monomers via Passerini multicomponent reactions (MCRs). We exploit the MCR's tolerance toward various functional groups under mild, catalyst-free conditions in a one-pot reaction setup to generate tetrazole-containing monomers featuring a methacrylic moiety, which enables their subsequent reversible addition-fragmentation chain transfer (RAFT) polymerization. By employing tetrazoles with either a 4-methoxy phenyl or a pyrene substituent, further modifications of the polymers in a wavelength-orthogonal, self-reporting fashion upon irradiation with either UV or visible light become possible.
Collapse
Affiliation(s)
- Christina M Geiselhart
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|