1
|
Ghose S, Duwez AS, Fustin CA, Remacle F. Response of a Tethered Zn-Bis-Terpyridine Complex to an External Mechanical Force: A Computational Study of the Roles of the Tether and Solvent. J Phys Chem A 2025; 129:3423-3434. [PMID: 40183643 DOI: 10.1021/acs.jpca.4c08639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Polymeric materials containing weak sacrificial bonds can be designed to engineer self-healing and higher toughness, improve melt-processing, or facilitate recycling. However, they usually exhibit a lower mechanical strength and are subject to creep and fatigue. For improving their design, it is of interest to investigate their mechanical response on the molecular scale. We report on a computational study of the response to a mechanical external force of a Zinc(II) bis-methyl phenyl-terpyridine ([Zn-bis-Terpy]2+) complex included in a cyclic poly(ethylene glycol) (PEG) tether designed to maintain the two partners of the metal-ligand bonds in close proximity after the rupture of the complex. The mechanical response is studied as a function of the pulling distortion by using the CoGEF isometric protocol, including interactions with a polar solvent (DMSO). We show that tethering favors recombination but destabilizes the complex before bond rupture because of the interactions of the PEG units with Terpy ligands. Similar effects occur between the DMSO molecules and the complex. Our results on the molecular scale are relevant for single-molecule force spectroscopy experiments. Interactions of the complex with solvent molecules and/or with the tether lead to a dispersion of the rupture force values, which could obscure the interpretation of the results.
Collapse
Affiliation(s)
- Shouryo Ghose
- Theoretical Physical Chemistry, Research Unit MOLSYS, University of Liège, 4000 Liège, Belgium
| | - Anne-Sophie Duwez
- NANOCHEM, Research Unit MOLSYS, University of Liège, 4000 Liège, Belgium
| | - Charles-André Fustin
- Bio and Soft Matter division (BSMA), Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Françoise Remacle
- Theoretical Physical Chemistry, Research Unit MOLSYS, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
2
|
Willis-Fox N. In-situ monitoring of polymer mechanochemistry: what can be learned from small molecule systems. Front Chem 2024; 12:1490847. [PMID: 39478993 PMCID: PMC11521884 DOI: 10.3389/fchem.2024.1490847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Using mechanical energy to drive chemical transformations is an exciting prospect to improve the sustainability of chemical reactions and to produce products not achievable by more traditional methods. In-situ monitoring of reaction pathways and chemical transformations is vital to deliver the reproducible results required for scale up to realize the potential of mechanochemistry beyond the chemistry lab. This mini review will discuss the recent advances in in-situ monitoring of ball milling and polymer mechanochemistry, highlighting the potential for shared knowledge for scale up.
Collapse
Affiliation(s)
- Niamh Willis-Fox
- Department of Materials, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Bai R, Zhang Z, Di W, Yang X, Zhao J, Ouyang H, Liu G, Zhang X, Cheng L, Cao Y, Yu W, Yan X. Oligo[2]catenane That Is Robust at Both the Microscopic and Macroscopic Scales. J Am Chem Soc 2023; 145:9011-9020. [PMID: 37052468 DOI: 10.1021/jacs.3c00221] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Polycatenanes are extremely attractive topological architectures on account of their high degrees of conformational freedom and multiple motion patterns of the mechanically interlocked macrocycles. However, exploitation of these peculiar structural and dynamic characteristics to develop robust catenane materials is still a challenging goal. Herein, we synthesize an oligo[2]catenane that showcases mechanically robust properties at both the microscopic and macroscopic scales. The key feature of the structural design is controlling the force-bearing points on the metal-coordinated core of the [2]catenane moiety that is able to maximize the energy dissipation of the oligo[2]catenane via dissociation of metal-coordination bonds and then activation of sequential intramolecular motions of circumrotation, translation, and elongation under an external force. As such, at the microscopic level, the single-molecule force spectroscopy measurement exhibits that the force to rupture dynamic bonds in the oligo[2]catenane reaches a record high of 588 ± 233 pN. At the macroscopic level, our oligo[2]catenane manifests itself as the toughest catenane material ever reported (15.2 vs 2.43 MJ/m3). These fundamental findings not only deepen the understanding of the structure-property relationship of poly[2]catenanes with a full set of dynamic features but also provide a guiding principle to fabricate high-performance mechanically interlocked catenane materials.
Collapse
Affiliation(s)
- Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Weishuai Di
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Xue Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hao Ouyang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guoquan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
4
|
Song Y, Ma Z, Zhang W. Manipulation of a Single Polymer Chain: From the Nanomechanical Properties to Dynamic Structure Evolution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ziwen Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
5
|
Bao Y, Huang X, Xu D, Xu J, Jiang L, Lu ZY, Cui S. Bound water governs the single-chain property of Poly(vinyl alcohol) in aqueous environments. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Ponomarenko AT, Tameev AR, Shevchenko VG. Action of Mechanical Forces on Polymerization and Polymers. Polymers (Basel) 2022; 14:604. [PMID: 35160593 PMCID: PMC8839360 DOI: 10.3390/polym14030604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
In this review, we summarize recent developments in the field of the mechanochemistry of polymers. The aim of the review is to consider the consequences of mechanical forces and actions on polymers and polymer synthesis. First, we review classical works on chemical reactions and polymerization processes under strong shear deformations. Then, we analyze two emerging directions of research in mechanochemistry-the role of mechanophores and, for the first time, new physical phenomena, accompanying external impulse mechanical actions on polymers. Mechanophores have been recently proposed as sensors of fatigue and cracks in polymers and composites. The effects of the high-pressure pulsed loading of polymers and composites include the Dzyaloshinskii-Moriya effect, emission of superradiation and the formation of metal nanoparticles. These effects provide deeper insight into the mechanism of chemical reactions under shear deformations and pave the way for further research in the interests of modern technologies.
Collapse
Affiliation(s)
- Anatoly T. Ponomarenko
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsoyuznaya, 117393 Moscow, Russia; (A.T.P.); (V.G.S.)
| | - Alexey R. Tameev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31, bld. 4 Leninsky Prospect, 119071 Moscow, Russia
| | - Vitaliy G. Shevchenko
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsoyuznaya, 117393 Moscow, Russia; (A.T.P.); (V.G.S.)
| |
Collapse
|
7
|
Li S, Li Z, Wang X, Zhan P, Gui X, Hu J, Lin S, Tu Y. Terraced and Three-dimensional Pyramid-shaped Polymer Single Crystal via low temperature-Assisted Microfluidic Technology. Macromol Rapid Commun 2021; 43:e2100747. [PMID: 34967476 DOI: 10.1002/marc.202100747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/18/2021] [Indexed: 11/11/2022]
Abstract
Three-dimensional pyramidal polymer single crystals provide spatial gradient variations within the crystal molecules, and these variations facilitate the study of the relationship between structure and properties within the molecules of various complexes with anisotropic structures. As described herein, we propose a low-temperature-assisted microfluidic pore channeling approach to prepare structurally ordered polymer single crystals. A mixture of dichloromethane and dimethyl sulfoxide was used as a prepolymer, and a liquid microfluidic technique was employed to grow the end-functionalized polymers into three-dimensional polymer single crystals. Through the ordered growth of single crystals, a personalized pyramidal pattern with a homogeneous structure was formed. To evaluate the mesh node density, low-temperature growth time and substrate type were also investigated. Rectangular, pyramidal, and dendritic patterns were synthesized via low-temperature single crystal growth. This work shows that low temperature-assisted microfluidics provides a novel means to tune the three-dimensional structure of polymer single crystals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shi Li
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhihua Li
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xiao Wang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Pei Zhan
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xuefeng Gui
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, P.R. China.,Incubator of Nanxiong CAS Co., Ltd., Nanxiong, 512400, P.R. China.,Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, P.R. China
| | - Jiwen Hu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, P.R. China.,Incubator of Nanxiong CAS Co., Ltd., Nanxiong, 512400, P.R. China.,Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, P.R. China
| | - Shudong Lin
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, P.R. China.,Incubator of Nanxiong CAS Co., Ltd., Nanxiong, 512400, P.R. China.,Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, P.R. China
| | - Yuanyuan Tu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, P.R. China.,Incubator of Nanxiong CAS Co., Ltd., Nanxiong, 512400, P.R. China.,Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, P.R. China
| |
Collapse
|
8
|
Bao Y, Huang X, Xu J, Cui S. Effect of Intramolecular Hydrogen Bonds on the Single-Chain Elasticity of Poly(vinyl alcohol): Evidencing the Synergistic Enhancement Effect at the Single-Molecule Level. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yu Bao
- Key Lab of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaobo Huang
- Key Lab of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu 610031, China
| | - Jun Xu
- Key Lab of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu 610031, China
| | - Shuxun Cui
- Key Lab of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
9
|
Muramatsu T, Okado Y, Traeger H, Schrettl S, Tamaoki N, Weder C, Sagara Y. Rotaxane-Based Dual Function Mechanophores Exhibiting Reversible and Irreversible Responses. J Am Chem Soc 2021; 143:9884-9892. [PMID: 34162206 DOI: 10.1021/jacs.1c03790] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mechanochromic mechanophores permit the design of polymers that indicate mechanical events through optical signals. Here we report rotaxane-based supramolecular mechanophores that display both reversible and irreversible fluorescence changes. These responses are triggered by different forces and are achieved by exploiting the molecular shuttling function and force-induced dethreading of rotaxanes. The new rotaxane mechanophores are composed of a ring featuring a luminophore, which is threaded onto an axle with a matching quencher and two stoppers. In the stress-free state, the luminophore is preferentially located in the proximity of the quencher, and the emission is quenched. The luminophore slides away from the quencher when a force is applied and the fluorescence is switched on. This effect is reversible, unless the force is so high that the luminophore-carrying ring slips past the stopper and dethreading occurs. We show that the combination of judiciously selected ring and stopper moieties is crucial to attain interlocked structures that display such a dual response. PU elastomers that contain such doubly responsive rotaxanes exhibit reversible fluorescence changes over multiple loading-unloading cycles due to the shuttling function, whereas permanent changes are observed upon repeated deformations to high strains due to breakage of the mechanical bond upon dethreading of the ring from the axle. This response allows one, at least conceptually, to monitor the actual deformation of polymer materials and examine mechanical damage that was inflicted in the past on the basis of an optical signal.
Collapse
Affiliation(s)
- Tatsuya Muramatsu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuji Okado
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Hanna Traeger
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Yoshimitsu Sagara
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
10
|
Affiliation(s)
- Yulan Chen
- Department of Chemistry, Tianjin University, Yaguan Road No. 135, Jinnan District, Tianjin, 300354, P. R. China
| | - Michael Sommer
- Institut für Chemie, Technische Universität Chemnitz, Professur Polymerchemie, Straße der Nationen 62, Chemnitz, 09111, Germany
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| |
Collapse
|