1
|
Wang D, Ge Y, Chen F, Deng H, Liu Y, Chen Y. The Design, Synthesis, and Characterization of Photochromic and Mechanochromic Functional Fibers. Macromol Rapid Commun 2025:e2400979. [PMID: 39871504 DOI: 10.1002/marc.202400979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Indexed: 01/29/2025]
Abstract
Mechanically responsive polymer materials have garnered significant interest due to their unique ability to respond to external forces, leading to groundbreaking applications in visual stress mapping and damage detection. However, their use in fibers remains relatively unexplored. In this study, a mechanoresponsive polymer is synthesized by incorporating a spiropyran (SP) mechanophore into a polyurethane backbone. Based on this mechanoresponsive polyurethane, mechanochromic fibers are fabricated via solution spinning. The fibers exhibits a clear color change from colorless to blue when subjected to external tensile stress or ultraviolet irradiation, triggered by the activation of the SP mechanophore. Furthermore, the mechanical sensitivity of the fibers can be tailored by adjusting the orientation of the polymer chains through hot stretching. Fibers subjected to higher pre-stretching during post-processing displayed a mechanochromic response at lower strain levels. Various pre-stretched fibers are then made into a barcode, which exhibits distinct dynamic information via color change during stretching. The innovative application of function fibers, capable of storing information through mechanochromic response, offers a novel approach to the development of anti-counterfeit fibers.
Collapse
Affiliation(s)
- Deqiang Wang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 200051, China
| | - Yifan Ge
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 200051, China
| | - Fengbiao Chen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 200051, China
| | - Hairui Deng
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 200051, China
| | - Yang Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 200051, China
| | - Yinjun Chen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 200051, China
| |
Collapse
|
2
|
Wang M, Jiang J, Liang S, Sui C, Wu S. Functional Semi-Interpenetrating Polymer Networks. Macromol Rapid Commun 2024; 45:e2400539. [PMID: 39212315 DOI: 10.1002/marc.202400539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Semi-interpenetrating polymer networks (SIPNs) have garnered significant interest due to their potential applications in self-healing materials, drug delivery systems, electrolytes, functional membranes, smart gels and, toughing. SIPNs combine the characteristics of physical cross-linking with advantageous chemical properties, offering broad application prospects in materials science and engineering. This perspective introduces the history of semi-interpenetrating polymer networks and their diverse applications. Additionally, the ongoing challenges associated with traditional semi-interpenetrating polymer materials are discussed and provide an outlook on future advancements in novel functional SIPNs.
Collapse
Affiliation(s)
- Minghao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiawei Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shuofeng Liang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Cong Sui
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Si Wu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Talukdar D, Gole B. Foldamer-Based Mechanoresponsive Materials: Molecular Nanoarchitectonics to Advanced Functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18791-18805. [PMID: 39051976 DOI: 10.1021/acs.langmuir.4c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Artificial molecules that respond to external stimuli such as light, heat, chemical signals, and mechanical force have garnered significant interest due to their tunable functions, variable optical properties, and mechanical responses. Particularly, mechanoresponsive materials featuring molecules that respond to mechanical stress or show force-induced optical changes have been intriguing due to their extraordinary functions. Despite the promising potential of many such materials reported in the past, practical applications have remained limited, primarily because their functions often depend on irreversible covalent bond rupture. Foldamers, oligomers that fold into well-defined secondary structures, offer an alternative class of mechanoactive motifs. These molecules can reversibly sustain mechanical stress and efficiently dissipate energy by transitioning between folded and unfolded states. This review focuses on the emerging properties of foldamer-based mechanoresponsive materials. We begin by highlighting the mechanical responses of foldamers in their molecular form, which have been primarily investigated using single-molecule force spectroscopy and other analytical methods. Following this, we provide a detailed survey of the current trends in foldamer-appended polymers, emphasizing their emerging mechanical and mechanochromic properties. Subsequently, we present an overview of the state-of-the-art advancements in foldamer-appended polymers, showcasing significant reports in this field. This review covers some of the most recent advances in this direction and draws a perspective for further development.
Collapse
Affiliation(s)
- Dhrubajyoti Talukdar
- Biomimetic Supramolecular Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India
| | - Bappaditya Gole
- Biomimetic Supramolecular Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
4
|
Yan Y, Liu T, Zhang J, Zhao H, Chen Q, Wang J, Liu J. A Simply Synthesized Shaking-induced Small Molecule System with Repeatable and Instantaneous Discoloration Response. Chemistry 2024; 30:e202401762. [PMID: 38888454 DOI: 10.1002/chem.202401762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
Force-related discoloration materials are highly valuable because of their characteristics of visualization, easy operation, and environment friendliness. Most force-related discoloration materials focus on polymers and depend on bond scission, which leads to insensitivity and unrecoverable. Small-molecule systems based on well-defined molecular structures and simple composition with high sensitivity would exhibit considerable mechanochromic potential. However, to date, researches about force-related discoloration materials based on small molecule solution remain limited and are rarely reported. In this study, we developed a repeatable and instantaneous discoloration small molecule solution system by simple one-pot synthesis method. It exhibited an instantaneous chromic change from yellowish to dark green under shaking and reverting back to yellow within 1 minute after removal of the shaking. Experimental results confirmed that the discoloration mechanism is attributed to the oscillation accelerating the production of unstable ortho-OH phenoxyl radical. The newly developed shaking-induced discoloration small molecule system (SDSMS) promises in field of mechanical force sensing and optical encryption.
Collapse
Affiliation(s)
- Yujie Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Tiannan Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Jiale Zhang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Jiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| |
Collapse
|
5
|
Oggioni M, Clough JM, Weder C. Mechanochromic polymer blends made with an excimer-forming telechelic sensor molecule. SOFT MATTER 2024; 20:2126-2131. [PMID: 38349528 PMCID: PMC10900888 DOI: 10.1039/d3sm01489d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
The ability to monitor mechanical stresses and strains in polymers via an optical signal enables the investigation of deformation processes in such materials and is technologically useful for sensing damage and failure in critical components. We show here that this can be achieved by simply blending polymers of interest with a small amount of a mechanochromic luminescent additive (Py-PEB) that can be accessed in one step by end-functionalizing a telechelic poly(ethylene-co-butylene) (PEB) with excimer-forming pyrenes. Py-PEB is poorly miscible with polar polymers, such as poly(ε-caprolactone) and poly(urethane), so that blends undergo microphase separation even at low additive concentrations (0.1-1 wt%), and the emission is excimer-dominated. Upon deformation, the ratio of excimer-to-monomer emission intensity decreases in response to the applied stress or strain. The approach appears to be generalizable, although experiments with poly(isoprene) show that it is not universal and that the (in)solubility of the additive in the polymer must be carefully tuned.
Collapse
Affiliation(s)
- Marta Oggioni
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland.
| | - Jess M Clough
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland.
- National Center of Competence in Research Bio-inspired Materials, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland.
- National Center of Competence in Research Bio-inspired Materials, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| |
Collapse
|
6
|
Wu H, Shi YZ, Wang K, Yu J, Zhang XH. Conformational isomeric thermally activated delayed fluorescence (TADF) emitters: mechanism, applications, and perspectives. Phys Chem Chem Phys 2023; 25:2729-2741. [PMID: 36633179 DOI: 10.1039/d2cp05119b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thermally activated delayed fluorescence (TADF) materials have received enormous attention and the mechanism behind them has been investigated in depth. It has been found that some donor-acceptor (D-A) type TADF emitters could obviously exhibit dual stable conformations in the ground states and their distributions significantly affect the physical properties and device performances. Therefore, professional analysis and a summary of the relationship between molecular structures and performances are very important. In this review, we first summarize the mechanism and properties of TADF emitters with conformational isomerism. We also classify their recent progress according to their different applications, and provide an outlook on their perspectives.
Collapse
Affiliation(s)
- Hao Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
| | - Yi-Zhong Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China.
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China. .,Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China. .,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China. .,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| |
Collapse
|
7
|
Geng Y, Kizhakidathazhath R, Lagerwall JPF. Robust cholesteric liquid crystal elastomer fibres for mechanochromic textiles. NATURE MATERIALS 2022; 21:1441-1447. [PMID: 36175519 PMCID: PMC9712110 DOI: 10.1038/s41563-022-01355-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/05/2022] [Indexed: 05/09/2023]
Abstract
Mechanically responsive textiles have transformative potential in many areas from fashion to healthcare. Cholesteric liquid crystal elastomers have strong mechanochromic responses that offer attractive opportunities for such applications. Nonetheless, making liquid crystalline elastomer fibres suitable for textiles is challenging since the Plateau-Rayleigh instability tends to break up precursor solutions into droplets. Here, we report a simple approach that balances the viscoelastic properties of the precursor solution to avoid this outcome and achieve long and mechanically robust cholesteric liquid crystal elastomer filaments. These filaments have fast, progressive and reversible mechanochromic responses, from red to blue (wavelength shift of 155 nm), when stretched up to 200%. Moreover, the fibres can be sewed into garments and withstand repeated stretching and regular machine washing. This approach and resulting fibres may be useful for applications in wearable technology and other areas benefiting from autonomous strain sensing or detection of critically strong deformations.
Collapse
Affiliation(s)
- Yong Geng
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg.
| | | | - Jan P F Lagerwall
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg.
| |
Collapse
|
8
|
O’Neill RT, Boulatov R. The Contributions of Model Studies for Fundamental Understanding of Polymer Mechanochemistry. Synlett 2021. [DOI: 10.1055/a-1710-5656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractThe exciting field of polymer mechanochemistry has made great empirical progress in discovering reactions in which a stretching force accelerates scission of strained bonds using single molecule force spectroscopy and ultrasonication experiments. Understanding why these reactions happen, i.e., the fundamental physical processes that govern coupling of macroscopic motion to chemical reactions, as well as discovering other patterns of mechanochemical reactivity require complementary techniques, which permit a much more detailed characterization of reaction mechanisms and the distribution of force in reacting molecules than are achievable in SMFS or ultrasonication. A molecular force probe allows the specific pattern of molecular strain that is responsible for localized reactions in stretched polymers to be reproduced accurately in non-polymeric substrates using molecular design rather than atomistically intractable collective motions of millions of atoms comprising macroscopic motion. In this review, we highlight the necessary features of a useful molecular force probe and describe their realization in stiff stilbene macrocycles. We describe how studying these macrocycles using classical tools of physical organic chemistry has allowed detailed characterizations of mechanochemical reactivity, explain some of the most unexpected insights enabled by these probes, and speculate how they may guide the next stage of mechanochemistry.
Collapse
Affiliation(s)
| | - Roman Boulatov
- Department of Chemistry, University of Liverpool
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University
| |
Collapse
|