1
|
Barik D, Porel M. Sequence-Defined Tertiary Amine-Based Oligomer Employing a Scalable, Support-Free, and Protection/Deprotection-Free Iterative Strategy. ACS Macro Lett 2024; 13:65-72. [PMID: 38165126 DOI: 10.1021/acsmacrolett.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Sequence-defined oligomers (SDOs) with their unique monomeric sequence and customizable nature are attracting the attention of researchers globally. The structural and functional diversity attainable in SDOs makes this platform promising, albeit with challenges in the synthesis. Herein, we report the design and synthesis of a novel class of SDO by incorporating tertiary amines into the backbone from commercially available inexpensive materials. Tertiary amines were selected due to their various material and biomedical applications. Even though the synthesis and purification of amine compounds are challenging, their various significant applications, such as pharmaceuticals, catalysts, surfactants, corrosion inhibitors, dye intermediates, polymer additives, rubber accelerators, gas treating agents, agriculture, and analytical chemistry, make them fascinating. The synthetic strategy that is designed here is extremely efficient and economical for the scalable synthesis of the SDO and is support-free, protection-deprotection chemistry-free, and catalyst/template-free. Most importantly, no extra design and synthesis of the monomer is required here. The key reactions employed for the SDO synthesis are (i) transformation of the hydroxy group to a halide and (ii) substitution of the halide by the secondary amine units. Including the purifying processes, the multigram synthesis of 4-mer was completed in 12-14 h. The synthetic strategy was established by synthesizing two different sequences of SDOs. The SDOs are characterized by 1H NMR and LC-MS. The tandem MS (MS/MS) experiment was conducted in order to validate the sequences over the SDO chain. Furthermore, the SDO platform was advanced in two ways: (i) by increasing the chain length via attaching a linker, which provides a rapid method for increasing the tertiary amine over the SDO chain, and (ii) postsynthetic modification of SDO with other functional groups, including guanidine for biological importance and a well-known fluorophore dansyl group for material significance.
Collapse
Affiliation(s)
- Debashis Barik
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, India
| | - Mintu Porel
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, India
- Environmental Sciences and Sustainable Engineering Center, Indian Institute of Technology Palakkad, Palakkad 678557, India
| |
Collapse
|
2
|
Selianitis D, Katifelis H, Gazouli M, Pispas S. Novel Multi-Responsive Hyperbranched Polyelectrolyte Polyplexes as Potential Gene Delivery Vectors. Pharmaceutics 2023; 15:1627. [PMID: 37376075 PMCID: PMC10301639 DOI: 10.3390/pharmaceutics15061627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
In this work, we investigate the complexation behavior of poly(oligo(ethylene glycol)methyl methacrylate)-co-poly(2-(diisopropylamino)ethyl methacrylate), P(OEGMA-co-DIPAEMA), hyperbranched polyelectrolyte copolymers, synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization, with short-linear DNA molecules. The synthesized hyperbranched copolymers (HBC), having a different chemical composition, are prepared in order to study their ability to bind with a linear nucleic acid at various N/P ratios (amine over phosphate groups). Specifically, the three pH and thermo-responsive P(OEGMA-co-DIPAEMA) hyperbranched copolymers were able to form polyplexes with DNA, with dimensions in the nanoscale. Using several physicochemical methods, such as dynamic and electrophoretic light scattering (DLS, ELS), as well as fluorescence spectroscopy (FS), the complexation process and the properties of formed polyplexes were explored in response to physical and chemical stimuli such as temperature, pH, and ionic strength. The mass and the size of polyplexes are shown to be affected by the hydrophobicity of the copolymer utilized each time, as well as the N/P ratio. Additionally, the stability of polyplexes in the presence of serum proteins is found to be excellent. Finally, the multi-responsive hyperbranched copolymers were evaluated regarding their cytotoxicity via in vitro experiments on HEK 293 non-cancerous cell lines and found to be sufficiently non-toxic. Based on our results, these polyplexes could be useful candidates for gene delivery and related biomedical applications.
Collapse
Affiliation(s)
- Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| | - Hector Katifelis
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.K.); (M.G.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.K.); (M.G.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
3
|
Cho Y, Kang H. Effect of the Alkyl Chain Length on Assessment as Thermo-Responsive Draw Solutes for Forward Osmosis. ACS OMEGA 2022; 7:41508-41518. [PMID: 36406486 PMCID: PMC9670907 DOI: 10.1021/acsomega.2c05279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
A series of thermo-responsive tetrabutylphosphonium 1-alkanesulfonates (abbreviated as [P4444][C n S], n = 6, 8, 10, and 12), where n is the number of carbon atoms in the alkyl group on the 1-alkanesulfonate anion, were prepared by an ion-exchange reaction to investigate their potential ability toward the application of draw solutes in forward osmosis (FO). We systematically studied the recovery properties and FO performance of [P4444][C n S]. This series exhibited lower critical solution temperature (LCST) characteristics, which offer a clear advantage of being energy-efficient for recovering draw solutes; however, [P4444][C6S] was only observed at 20 wt %. The LCSTs of the 20 wt % [P4444][C6S], [P4444][C8S], [P4444][C10S], and [P4444][C12S] draw solutions were approximately 83, 54, 49, and 56 °C, respectively. Moreover, when the orientation of the active layer was heading toward the draw solution (AL-DS mode), the water and reverse solute flux of [P4444][C10S] were about 1.58 LMH and 0.81 gMH, respectively, at 20 wt % aqueous solutions. When the membrane was used in the active layer facing the feed solution (AL-FS) system, the water and reverse solute flux of [P4444][C10S] were approximately 0.71 LMH and 0.38 gMH, respectively, at 20 wt % aqueous solutions. Thus, this study is the first to examine the structural transformations of the bulkier alkyl group on the sulfonate anion moiety and its feasibility as the new draw solute for the FO system.
Collapse
Affiliation(s)
| | - Hyo Kang
- . Tel.: +82 51 200 7720. Fax: +82 51 200 7728
| |
Collapse
|
4
|
Frank A, Weber M, Hils C, Mansfeld U, Kreger K, Schmalz H, Schmidt HW. Functional Mesostructured Electrospun Polymer Nonwovens with Supramolecular Nanofibers. Macromol Rapid Commun 2022; 43:e2200052. [PMID: 35320608 DOI: 10.1002/marc.202200052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Indexed: 11/09/2022]
Abstract
Functional, hierarchically mesostructured nonwovens are of fundamental importance because complex fiber morphologies increase the active surface area and functionality allowing for the effective immobilization of metal nanoparticles. Such complex functional fiber morphologies clearly widen the property profile and enable the preparation of more efficient and selective filter media. Here, we demonstrate the realization of hierarchically mesostructured nonwovens with barbed wire-like morphology by combining electrospun polystyrene fibers, decorated with patchy worm-like micelles, with solution-processed supramolecular short fibers composed of 1,3,5-benzenetricarboxamides with peripheral N,N-diisopropylaminoethyl substituents. The worm-like micelles with a patchy microphase-separated corona were prepared by crystallization-driven self-assembly of a polyethylene based triblock terpolymer and deposited on top of the polystyrene fibers by coaxial electrospinning. The micelles were designed in a way that their patches promote the directed self-assembly of the 1,3,5-benzenetricarboxamide and the fixation of the supramolecular nanofibers on the supporting polystyrene fibers. Functionality of the mesostructured nonwoven is provided by the peripheral N,N-diisopropylaminoethyl substituents of the 1,3,5-benzenetricarboxamide and proven by the effective immobilization of individual palladium nanoparticles on the supramolecular nanofibers. The preparation of hierarchically mesostructured nonwovens and their shown functionality demonstrate that such systems are attractive candidates to be used for example in filtration, selective separation and heterogenous catalysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andreas Frank
- Macromolecular Chemistry I and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Melina Weber
- Macromolecular Chemistry I and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Christian Hils
- Macromolecular Chemistry II and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Ulrich Mansfeld
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Klaus Kreger
- Macromolecular Chemistry I and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Holger Schmalz
- Macromolecular Chemistry II and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Hans-Werner Schmidt
- Macromolecular Chemistry I and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| |
Collapse
|
5
|
Bariwal J, Ma H, Altenberg GA, Liang H. Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chem Soc Rev 2022; 51:1702-1728. [PMID: 35156110 DOI: 10.1039/d1cs01074c] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer therapy is a significant challenge due to insufficient drug delivery to the cancer cells and non-selective killing of healthy cells by most chemotherapy agents. Nano-formulations have shown great promise for targeted drug delivery with improved efficiency. The shape and size of nanocarriers significantly affect their transport inside the body and internalization into the cancer cells. Non-spherical nanoparticles have shown prolonged blood circulation half-lives and higher cellular internalization frequency than spherical ones. Nanodiscs are desirable nano-formulations that demonstrate enhanced anisotropic character and versatile functionalization potential. Here, we review the recent development of theranostic nanodiscs for cancer mitigation ranging from traditional lipid nanodiscs encased by membrane scaffold proteins to newer nanodiscs where either the membrane scaffold proteins or the lipid bilayers themselves are replaced with their synthetic analogues. We first discuss early cancer detection enabled by nanodiscs. We then explain different strategies that have been explored to carry a wide range of payloads for chemotherapy, cancer gene therapy, and cancer vaccines. Finally, we discuss recent progress on organic-inorganic hybrid nanodiscs and polymer nanodiscs that have the potential to overcome the inherent instability problem of lipid nanodiscs.
Collapse
Affiliation(s)
- Jitender Bariwal
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hairong Ma
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hongjun Liang
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|