1
|
Wu J, Liao C, Li T, Zhou J, Zhang L, Wang JQ, Li G, Li X. Metal-coordinated polybenzimidazole membranes with preferential K + transport. Nat Commun 2023; 14:1149. [PMID: 36854779 PMCID: PMC9975182 DOI: 10.1038/s41467-023-36711-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
Membranes with fast and selective ion transport are essential for separations and electrochemical energy conversion and storage devices. Metal-coordinated polymers are promising for fabricating ion-conducting membranes with molecular channels, however, the structures and ion transport channels remain poorly understood. Here, we reported mechanistic insights into the structures of metal-ion coordinated polybenzimidazole membranes and the preferential K+ transport. Molecular dynamics simulations suggested that coordination between metal ions and polybenzimidazole expanded the free volume, forming subnanometre molecular channels. The combined physical confinement in nanosized channels and electrostatic interactions of membranes resulted in a high K+ transference number up to 0.9 even in concentrated salt and alkaline solutions. The zinc-coordinated polybenzimidazole membrane enabled fast transport of charge carriers as well as suppressed water migration in an alkaline zinc-iron flow battery, enabling the battery to operate stably for over 340 hours. This study provided an alternative strategy to regulate the ion transport properties of polymer membranes by tuning polymer chain architectures via metal ion coordination.
Collapse
Affiliation(s)
- Jine Wu
- grid.9227.e0000000119573309Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Chenyi Liao
- grid.9227.e0000000119573309Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Tianyu Li
- grid.9227.e0000000119573309Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Jing Zhou
- grid.9227.e0000000119573309Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Linjuan Zhang
- grid.9227.e0000000119573309Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Jian-Qiang Wang
- grid.9227.e0000000119573309Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xianfeng Li
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
2
|
Hu L, Fan S, Huang L, Bui VT, Tran T, Chen K, Ding Y, Swihart MT, Lin H. Supramolecular Polymer Networks of Ion-Coordinated Polybenzimidazole with Simultaneously Improved H 2 Permeability and H 2/CO 2 Selectivity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leiqing Hu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Shouhong Fan
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Liang Huang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Vinh T. Bui
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Thien Tran
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Kaiwen Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yifu Ding
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Mark T. Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|