1
|
He L, Chen Y, Shao X, Yao Q, Feng D, Yin L, Wang W. A Facile Method in Fabricating Flexible Conductive Composites with Large-Size Segregated Structures for Electromagnetic Interference Shielding. Macromol Rapid Commun 2025; 46:e2400585. [PMID: 39461897 DOI: 10.1002/marc.202400585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/06/2024] [Indexed: 10/29/2024]
Abstract
To resist the plastic deformation of polymer particles during hot press molding, high molecular weights, and moduli are required for composites with segregated structures, thus the prepared composites exhibit poor flexibility. Also, larger particle sizes can bring lower percolation thresholds while the ensuing greater deformation destroys the conductive network. Moreover, segregated composites still face preparation complexities. Herein, a facile method for developing flexible composites with large-size segregated structures is proposed. First, silver-coated polydopamine-modified reduced graphene oxide (Ag@PrGO), as conductive fillers, is prepared by electroless plating. Next, polydimethylsiloxane (PDMS)-coated polyolefin elastomer (POE) beads are put into a bag containing the fillers. After a simple shaking, the fillers are adhered to the POE surface as the cohesive property of cured PDMS. Finally, flexible composites with large-size segregated structures are obtained via hot pressing. Benefiting from the 2D structure of the Ag@PrGO and the ability to slip, the conductive networks possess adaptable deformability. The prepared composites exhibit excellent electrical conductivity (203.55 S cm-1) at filler volume fractions of 3.4 vol%. The EMI shielding effectiveness can reach 70 dB in the X-band at a thickness of 1.9 mm and remains stable after bending and rubbing damage. This work paves the way for constructing large-size segregated structures.
Collapse
Affiliation(s)
- Liang He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoming Shao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qiyuan Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ding Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lijie Yin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wencai Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Yang X, Wang N, Li X, Xu T, Song N, Qian G, Ding P. Integrated Thermal Conductive and Electromagnetic Interference Shielding Performance in Polyimide Composite: Impact of Carbon Felt-Graphene Van der Waals Heterostructure. Macromol Rapid Commun 2024:e2400527. [PMID: 39137308 DOI: 10.1002/marc.202400527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Indexed: 08/15/2024]
Abstract
With the widespread application of highly integrated electronic devices, the urgent development of multifunctional polymer-based composite materials with high electromagnetic interference shielding effectiveness (EMI SE) and thermal conductivity capabilities is critically essential. Herein, a graphene/carbon felt/polyimide (GCF/PI) composite is prepared through constructing 3D van der Waals heterostructure by heating carbon felt and graphene at high temperature. The GCF-3/PI composite exhibits the highest through-plane thermal conductivity with 1.31 W·m-1·K-1, when the content of carbon felt and graphene is 14.1 and 1.4 wt.%, respectively. The GCF-3/PI composite material achieves a thermal conductivity that surpasses pure PI by 4.9 times. Additionally, GCF-3/PI composite shows an outstanding EMI SE of 69.4 dB compared to 33.1 dB for CF/PI at 12 GHz. The 3D van der Waals heterostructure constructed by carbon felt and graphene sheets is conducive to the formation of continuous networks, providing fast channels for the transmission of phonons and carriers. This study provides a guidance on the impact of 3D van der Waals heterostructures on the thermal and EMI shielding properties of composites.
Collapse
Affiliation(s)
- Xiaohui Yang
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Nan Wang
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Xiong Li
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Tongle Xu
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Na Song
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Gao Qian
- The Institute of Service-Oriented Manufacturing (Hangzhou) Ltd., Hangzhou, 311100, P. R. China
| | - Peng Ding
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| |
Collapse
|
3
|
Kumari S, Dalal J, Kumar A, Pal R, Chahal R, Ohlan A. Enhanced microwave absorption properties of conducting polymer@graphene composite to counteract electromagnetic radiation pollution: green EMI shielding. RSC Adv 2024; 14:662-676. [PMID: 38173587 PMCID: PMC10760626 DOI: 10.1039/d3ra07245b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Conducting polymers have been thoroughly investigated and found to have extensive applications in the fields of microwave absorption and electromagnetic (EM) shielding owing to their distinctive characteristics and adaptability. In the present work, conducting polymer (PEDOT and polyaniline) and graphene composites were prepared via an in situ chemical polymerization technique. Further, these composite materials were characterized to determine their potential to address the issue of EM radiation pollution in the microwave frequency (12.4 GHz to 18 GHz). The PEDOT/graphene composites exhibited significant shielding effectiveness of up to 46.53 dB, achieving a green index (gs) of 1.17. Also, absorption was observed to be the dominant shielding mechanism in all the samples owing to significant dielectric losses (ε''/ε' ≈ 1.9-3.1) and microwave conductivity (σs = 19.9-73.6 S m-1) in the samples at 18 GHz. Both dielectric loss and conduction loss occurred because of the strong interactions involving polarization, charge propagation, and the creation of conductive routes through the incorporation of graphene in the polymer matrix. These properties/shielding results indicate the potential of the composites to be used as lightweight EM shielding materials. These materials are suitable shield materials for electronic devices to protect them from harmful electromagnetic radiation, making them vital in various applications.
Collapse
Affiliation(s)
- Suman Kumari
- Department of Physics, Chaudhary Ranbir Singh University Jind 126102 India
- Department of Physics, Maharani Kishori Jat Kanya Mahavidyalaya Rohtak 124001 India
| | - Jasvir Dalal
- Department of Physics, Rajdhani College, University of Delhi Delhi 110015 India
| | - Anand Kumar
- Department of Physics, Chaudhary Ranbir Singh University Jind 126102 India
| | - Rishi Pal
- Department of Applied Science, Kalpana Chawla Government Polytechnic Ambala 134003 India
| | - Ritu Chahal
- Department of Physics, Maharshi Dayanand University Rohtak 124001 India
| | - Anil Ohlan
- Department of Physics, Maharshi Dayanand University Rohtak 124001 India
| |
Collapse
|