1
|
Zhang X, Chang M, Wang D, Wang L, Yang X, Ben Z, Zhang Q, Lu Y. Enhanced photocatalytic performance in seawater of donor-acceptor type conjugated polymers through introduction of alkoxy groups in the side chain. J Colloid Interface Sci 2025; 682:1151-1163. [PMID: 39671949 DOI: 10.1016/j.jcis.2024.11.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
Previous studies have demonstrated that the donor (D)-acceptor (A) structure enables conjugated polymers (CPs) to effectively inhibit charge recombination, reduce exciton binding energy to a minimum, and broaden the light absorption spectrum, ultimately enhancing photocatalytic activity. Besides, side chain engineering is an effective approach to enhance photocatalytic performance by regulating surface chemistry and energy band structure of CPs. Herein, three D-A type CPs, namely TPD-T, TPD-MOT and TPD-DOT, were designed and synthesized using thieno[3,4-c]pyrrole-4,6-dione (TPD) as A units and thiophene with different alkyl/alkoxy groups side chain (as 3-octylthiophene (T), 3-methoxythiophene (MOT) and 3,4-ethylenedioxythiophene (DOT)) as D units, via an atom- and step-economic CH/CH cross-coupling polycondensation. The photocatalytic hydrogen production performance of these polymers driven by visible light was systematically evaluated in pure water and natural seawater. The results show that the hydrogen evolution rates (HERs) of the as-synthesized CPs in pure water and natural seawater significantly increased by 5 and 7 times, respectively, when the number of alkoxy groups on the side chain of polymers increased from 0 to 2. In particular, HERs of three polymers in natural seawater are distinctly better than that in pure water. Further, the steady-state photoluminescence (PL), time-resolved fluorescence decay, and electrochemical impedance spectroscopy (EIS) studies combined with density functional theory (DFT) simulations were carried out to figure out the possible mechanism of the enhanced photocatalytic performance of CPs by side chain engineering. This work indicates that side chain engineering contributes significantly to determine the photocatalytic activity of D-A polymers-based photocatalysts, and could serve as guidelines for organic photocatalysts with highly efficient hydrogen evolution performance.
Collapse
Affiliation(s)
- Xinjuan Zhang
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Menghan Chang
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Di Wang
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Lin Wang
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xuan Yang
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M139PL, United Kingdom
| | - Zhaohang Ben
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qiang Zhang
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Yan Lu
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
2
|
Ye D, Liu L, Peng Q, Qiu J, Gong H, Zhong A, Liu S. Effect of Controlling Thiophene Rings on D-A Polymer Photocatalysts Accessed via Direct Arylation for Hydrogen Production. Molecules 2023; 28:4507. [PMID: 37298982 PMCID: PMC10254606 DOI: 10.3390/molecules28114507] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Conjugated polymer photocatalysts for hydrogen production have the advantages of an adjustable structure, strong response in the visible light region, adjustable energy levels, and easy functionalization. Using an atom- and step-economic direct C-H arylation method, dibromocyanostilbene was polymerized with thiophene, dithiophene, terthiophene, and fused thienothiophene and dithienothiophene, respectively, to produce donor-acceptor (D-A)-type linear conjugated polymers containing different thiophene derivatives with different conjugation lengths. Among them, the D-A polymer photocatalyst constructed from dithienothiophene could significantly broaden the spectral response, with a hydrogen evolution rate up to 12.15 mmol h-1 g-1. The results showed that the increase in the number of fused rings on thiophene building blocks was beneficial to the photocatalytic hydrogen production of cyanostyrylphene-based linear polymers. For the unfused dithiophene and terthiophene, the increase in the number of thiophene rings enabled more rotation freedom between the thiophene rings and reduced the intrinsic charge mobility, resulting in lower hydrogen production performance accordingly. This study provides a suitable process for the design of electron donors for D-A polymer photocatalysts.
Collapse
Affiliation(s)
- Dongnai Ye
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.Y.); (Q.P.); (H.G.)
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Lei Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.Y.); (Q.P.); (H.G.)
| | - Qimin Peng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.Y.); (Q.P.); (H.G.)
| | - Jiabin Qiu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.Y.); (Q.P.); (H.G.)
| | - Hao Gong
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.Y.); (Q.P.); (H.G.)
| | - Aiguo Zhong
- Department of Pharmacy & Chemistry, Taizhou University, Taizhou 318000, China;
| | - Shiyong Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.Y.); (Q.P.); (H.G.)
| |
Collapse
|
3
|
Zhang G, Zhao M, Su L, Yu H, Wang C, Sun D, Ding Y. Donor-Acceptor Covalent-Organic Frameworks Based on Phthalimide as an Electron-Deficient Unit for Efficient Visible-Light Catalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20310-20316. [PMID: 36994986 DOI: 10.1021/acsami.3c00786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Donor-acceptor two-dimensional covalent-organic frameworks (COFs) have great potential as photocatalysts for hydrogen evolution because of their tunable structures, ordered and strong stacking, high crystallinity, and porosity. Herein, an acceptor unit, namely phthalimide, has been employed for the first time to construct COFs. Two donor-acceptor COFs (TAPFy-PhI and TAPB-PhI) have been successfully synthesized via a Schiff base reaction using phthalimide as the acceptor and 1,3,6,8-tetrakis(4-aminophenyl)pyrene (TAPFy) and 1,3,5-tris(4-aminophenyl)benzene (TAPB) as donors. The synthesized COFs exhibited high crystallinity, permanent porosity, excellent chemical stability, suitable band gaps, and broad visible-light absorption. In the presence of ascorbic acid (sacrificial reagent), the TAPFy-PhI COF exhibited an efficient photocatalytic performance with a hydrogen evolution rate of 1763 μmol g-1 h-1. Moreover, the photocatalytic performance was further improved by the addition of Pt (1 wt %) as a cocatalyst, and the hydrogen evolution rate reached 2718 μmol g-1 h-1.
Collapse
Affiliation(s)
- Guobing Zhang
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Optoelectronic Technology, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Advance Functional Materials and Devices of Anhui Province, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Mingshi Zhao
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Optoelectronic Technology, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China
| | - Linghui Su
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065, China
| | - Hao Yu
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Optoelectronic Technology, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China
| | - Chenxi Wang
- Key Laboratory of Advance Functional Materials and Devices of Anhui Province, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dengrong Sun
- College of Carbon Neutrality Future Technology, National Engineering Research Centre for Flue Gas Desulfurization, Carbon Neutral Technology Innovation Center of Sichuan, Sichuan University, Chengdu 610065, China
| | - Yunsheng Ding
- Key Laboratory of Advance Functional Materials and Devices of Anhui Province, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
4
|
Tunable Donor-Acceptor Linear Conjugated Polymers Involving Cyanostyrylthiophene Linkages for Visible-Light-Driven Hydrogen Production. Molecules 2023; 28:molecules28052203. [PMID: 36903455 PMCID: PMC10004844 DOI: 10.3390/molecules28052203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
In this paper, an atom- and step-economic direct C-H arylation polymerization (DArP) strategy was developed to access cyanostyrylthiophene (CST)-based donor-acceptor (D-A) conjugated polymers (CPs) used for photocatalytic hydrogen production (PHP) from water reduction. The new CST-based CPs CP1-CP5 with varied building blocks were systematically studied by X-ray single-crystal analysis, FTIR, scanning electron microscopy, UV-vis, photoluminescence, transient photocurrent response, cyclic voltammetry measurements, and a PHP test, which showed that the phenyl-cyanostyrylthiophene-based CP3 exhibits a superior hydrogen evolution rate (7.60 mmol h-1 g-1) compared to other conjugated polymers. The structure-property-performance correlation results obtained in this study will provide an important guideline for the rational design of high-performance D-A CPs for PHP applications.
Collapse
|