1
|
Wei M, Liu K, Wang Y, Zhang G, Liu Q, Zhang Q, Zhang B. Hierarchical Magnetic Carbon Nanoflowers for Ultra-Efficient Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402632. [PMID: 39012068 DOI: 10.1002/smll.202402632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Porous carbon nanomaterials are widely applied in the electromagnetic wave absorption (EMWA) field. Among them, an emerging flower-like carbon nanomaterial, termed carbon nanoflowers (CNFs), has attracted tremendous research attention due to their unique hierarchical flower-like structure. However, the design of flower-like carbon nanomaterials with different magnetic cores for EMWA has rarely been reported. Herein, a general template method is proposed to achieve a set of high-quality magnetic CNFs, namely Co@Void@CNFs, CoNi@CNFs, and Ni@CNFs. The prepared magnetic CNFs have highly accessible surface area and internal space, rich heteroatom content, multi-scale pore system, and uniform and highly dispersed magnetic nanoparticles, as a result, deliver superior EMWA performance. Specifically, when the thickness is 2.6 mm, the Co@Void@CNFs exhibit a maximum refection loss (RLmax) of -56.6 dB and an effective absorption bandwidth (EAB) from 8.0 to 12.1 GHz covering the whole X band. The CoNi@CNFs have an RLmax of up to -57.6 dB and a wide EAB of 5.6 GHz at just 1.9 mm. For the Ni@CNFs, possess an ultra-broad EAB of 6.1 GHz, covering the entire Ku band at 2.0 mm. Overall, the hierarchical magnetic carbon nanoflowers proposed here offer new insights toward realizing multifunctional integrated carbon nanomaterials for EMWA.
Collapse
Affiliation(s)
- Mengmeng Wei
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Kai Liu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yunhao Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guoxian Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation, Sunresins New Materials Co. Ltd., Xi'an, 710072, China
| |
Collapse
|
2
|
Zhang Y, Zhang G, Wu J, Yu J, Li G, Guan T, Wang K. Amorphous carbon nanosheets suitable for deep eutectic solvent electrolyte toward cryogenic energy storage. J Colloid Interface Sci 2023; 650:2003-2013. [PMID: 37531667 DOI: 10.1016/j.jcis.2023.07.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
The emerging deep eutectic solvent (DES) electrolyte has great potential in realizing commercial-scale application of electric double-layer capacitors (EDLCs) served in low temperature environment. That goal, however, rests with how to design the interface structure of electrode materials for well-matching with DES electrolyte. Herein, porous carbon nanosheets (PCNs) were obtained from coal tar pitch through Friedel-Crafts acylation reaction and melting salt intercalation process. The morphology, specific surface area and porosity of porous carbon nanosheets were regulated by tailoring the abundance of the dangling-bonds grafted on the CTP molecules. Profiting from the large specific surface area, suitable pore structure and good two-dimensional structure to provide more active sites and enhance ion transport capacity, the PCNs-0.10 delivers a maximal specific capacitance of 504F g-1 at 0.1 A g-1, which is overmatch than most of previously reported for other carbon materials. As-assembled symmetrical EDLCs using K+ DES electrolyte, can be assembled to work at -40 °C to 75 °C and exhibit satisfactory energy density. The strategy proposed here has opened a new way for exploring the large-scale preparation of electrode materials suitable for ultra-low temperature capacitors.
Collapse
Affiliation(s)
- Yi Zhang
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
| | - Guoli Zhang
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.
| | - Juncheng Wu
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
| | - Jiangyong Yu
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
| | - Gang Li
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China
| | - Taotao Guan
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.
| | - Kaiying Wang
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway.
| |
Collapse
|
3
|
Liu JY, Song HR, Wang M, Jin SH, Liang Z, Mao X, Li W, Deng RH, Zhu JT. Asymmetric Mesoporous Carbon Microparticles by 3D-Confined Self-Assembly of Block Copolymer/Homopolymer Blends and Selective Carbonization. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
4
|
Collins G, Kasturi PR, Karthik R, Shim JJ, Sukanya R, Breslin CB. Mesoporous carbon-based materials and their applications as non-precious metal electrocatalysts in the oxygen reduction reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Zhang J, Li S, Yin Y, Xiang L, Xu F, Mai Y. One-Dimensional Helical Nanostructures from the Hierarchical Self-Assembly of an Achiral "Rod-Coil" Alternating Copolymer. Macromol Rapid Commun 2022; 43:e2200437. [PMID: 35726773 DOI: 10.1002/marc.202200437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Indexed: 11/09/2022]
Abstract
The self-assembly of alternating copolymers (ACPs) has attracted considerable interest due to their unique alternating nature. However, compared with block copolymers, their self-assembly behavior has remained much less explored and their reported self-assembled structures are limited. Here, we report the formation of supramolecular helical structures by the self-assembly of an achiral rod-coil alternating copolymer, poly(quarter(3-hexylthiophene)-alt-poly(ethylene glycol)) (P(Q3HT-alt-PEG)). The copolymer exhibited an interesting hierarchical self-assembly process, driven by the π-π stacking of the Q3HT segments and the solvophobic interaction of the alkyl chains in tetrahydrofuran (THF)-isopropanol (iPrOH) mixed solvents. The copolymer first self-assembled into thin nanobelts with a uniform size, then grew to helical nanoribbons and eventually twisted into helical nanowires with an average diameter of 25 ± 9 nm and a mean pitch of 80 ± 10 nm. Dissipative particle dynamics (DPD) simulation supported the formation course of the helical nanowires. Furthermore, the addition of (S)-ethyl lactate and (R)-ethyl lactate in the self-assembly of P(Q3HT-alt-PEG) resulted in the formation of left-handed and right-handed chiral nanowires, respectively, demonstrating the tunability of the chirality of the helical wires. This study expands the library of ordered self-assembled structures of ACPs, and also brings a new strategy and mechanism to construct helical supramolecular structures. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiacheng Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shanlong Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yucheng Yin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luoxing Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|