1
|
Park S, Bisht H, Park S, Jeong J, Hong Y, Chu D, Koh M, Hong D. Melanin-Inspired Maleimide Coatings on Various Substrates for Rapid Thiol Functionalization. Macromol Biosci 2025; 25:e2400616. [PMID: 39973616 DOI: 10.1002/mabi.202400616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Indexed: 02/21/2025]
Abstract
In this study, a substrate-independent maleimide film is developed that can be formed under mild aqueous conditions (pH 7.4), and which allows rapid and efficient external thiol immobilization onto the coated surfaces. For the coating block, tyrosine-conjugated maleimide (Tyr-Mal) containing a phenolic amine moiety is prepared as a substrate-independent dormant coating precursor, wherein the maleimide component permits a rapid Michael addition reaction with the thiol moiety of interest. By mimicking natural melanogenesis, Tyr-Mal acts as a substrate for tyrosinase under physiological conditions (pH 7.4) to form a melanin-inspired maleimide (Mel-Mal) film on various substrates, including living cell surfaces. The resulting film undergoes a rapid surface reaction (< 30 min) with external thiol groups under mild aqueous conditions. Considering that a typical polydopamine film requires a long reaction time (≈3 h) under alkaline conditions (pH 8.5) to achieve thiol functionalization with low efficiency, the current surface platform demonstrates significant improvements in terms of its reaction kinetics and usability. Moreover, considering that thiol functionalization and surface coating are performed under mild aqueous conditions, it is expected that the developed Mel-Mal film will be a useful tool in the fields of cell surface engineering, microarrays, and high-throughput screening.
Collapse
Affiliation(s)
- Suho Park
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Himani Bisht
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Seongchul Park
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaehoon Jeong
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Yubin Hong
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Daeun Chu
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Daewha Hong
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
2
|
Pretzler M, Rompel A. Tyrosinases: a family of copper-containing metalloenzymes. CHEMTEXTS 2024; 10:12. [PMID: 39624788 PMCID: PMC11608171 DOI: 10.1007/s40828-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/15/2024] [Indexed: 12/08/2024]
Abstract
Tyrosinases (TYRs) are a family of copper-containing metalloenzymes that are present in all domains of life. TYRs catalyze the reactions that start the biosynthesis of melanin, the main pigment of the animal kingdom, and are also involved in the formation of the bright colors seen on the caps of mushrooms and in the petals of flowers. TYRs catalyze the ortho-hydroxylation and oxidation of phenols and the oxidation of catechols to the respective o-quinones. They only need molecular oxygen to do that, and the products of TYRs-o-quinones-are highly reactive and will usually react with the next available nucleophile. This reactivity can be harnessed for pharmaceutical applications as well as in environmental and food biotechnology. The majority of both basic and applied research on TYRs utilizes "mushroom tyrosinase", a crude enzyme preparation derived from button mushroom (Agaricus bisporus) fruiting bodies. Access to pure TYR preparations comes almost exclusively from the production of recombinant TYRs as the purification of these enzymes from the natural source is usually very laborious and plagued by low yields. In this text an introduction into the biochemistry of the enzyme TYR will be given, followed by an overview of available structural data of TYRs, the current model for the catalytic mechanism, a survey of reports on the recombinant production of this important metalloenzyme family, and a review of the applications of TYRs for the synthesis of catechols, as biosensors, in bioremediation, for the cross-linking of proteins and medical hydrogels as well as for melanoma treatment. Graphical Abstract
Collapse
Affiliation(s)
- Matthias Pretzler
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
3
|
Vona D, Cicco SR, Vicente-Garcia C, Digregorio A, Rizzo G, Labarile R, Giangregorio MM, Porfido C, Terzano R, Altamura E, Cotugno P, Farinola GM. A melanin-like polymer bearing phenylboronic units as a suitable bioplatform for living cell display technology. Sci Rep 2024; 14:17856. [PMID: 39090178 PMCID: PMC11294599 DOI: 10.1038/s41598-024-68932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Surface display of functional groups with specific reactivity around living cells is an emerging, low cost and highly eco-compatible technology that serves multiple applications, ranging from basic biochemical studies to biomedicine, therapeutics and environmental sciences. Conversely to classical methods exploiting hazardous organic synthesis of precursors or monovalent functionalization via genetics, here we perform functional decoration of individual living microalgae using suitable biocoatings based on polydopamine, a melanin-like synthetic polymer. Here we demonstrate the one-pot synthesis of a functional polydopamine bearing phenylboronic units which can decorate the living cell surfaces via a direct ester formation between boronic units and surface glycoproteins. Furthermore, biosorption of fluorescent sugars on functionalized cell membranes is triggered, demonstrating that these organic coatings act as biocompatible soft shells, still functional and reactive after cell engineering.
Collapse
Affiliation(s)
- Danilo Vona
- Dipartimento Di Scienze del Suolo, Della Pianta E Degli Alimenti (Di.S.S.P.A.), Università Degli Studi Di Bari "Aldo Moro", Via G. Amendola 165/A, 70126, Bari, Italy
| | | | - Cesar Vicente-Garcia
- Dipartimento Di Chimica, Università Degli Studi Di Bari "Aldo Moro", Via E. Orabona 4, 70126, Bari, Italy
| | - Alessandro Digregorio
- Dipartimento Di Chimica, Università Degli Studi Di Bari "Aldo Moro", Via E. Orabona 4, 70126, Bari, Italy
| | - Giorgio Rizzo
- Dipartimento Di Chimica, Università Degli Studi Di Bari "Aldo Moro", Via E. Orabona 4, 70126, Bari, Italy
| | - Rossella Labarile
- Consiglio Nazionale Delle Ricerche, IPCF-CNR, Via E. Orabona 4, 70126, Bari, Italy
| | | | - Carlo Porfido
- Dipartimento Di Scienze del Suolo, Della Pianta E Degli Alimenti (Di.S.S.P.A.), Università Degli Studi Di Bari "Aldo Moro", Via G. Amendola 165/A, 70126, Bari, Italy
| | - Roberto Terzano
- Dipartimento Di Scienze del Suolo, Della Pianta E Degli Alimenti (Di.S.S.P.A.), Università Degli Studi Di Bari "Aldo Moro", Via G. Amendola 165/A, 70126, Bari, Italy
| | - Emiliano Altamura
- Dipartimento Di Chimica, Università Degli Studi Di Bari "Aldo Moro", Via E. Orabona 4, 70126, Bari, Italy.
| | - Pietro Cotugno
- Dipartimento Di Chimica, Università Degli Studi Di Bari "Aldo Moro", Via E. Orabona 4, 70126, Bari, Italy.
| | - Gianluca Maria Farinola
- Dipartimento Di Chimica, Università Degli Studi Di Bari "Aldo Moro", Via E. Orabona 4, 70126, Bari, Italy
| |
Collapse
|
4
|
Jeong J, Bisht H, Park S, Hong Y, Shin G, Hong D. Formation of Antifouling Brushes on Various Substrates Using a Melanin-Inspired Initiator Film. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37216408 DOI: 10.1021/acs.langmuir.3c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, we developed a substrate-independent initiator film that can undergo surface-initiated polymerization to form an antifouling brush. Inspired by the melanogenesis found in nature, we synthesized a tyrosine-conjugated bromide initiator (Tyr-Br) that contains phenolic amine groups as the dormant coating precursor and α-bromoisobutyryl groups as the initiator. The resultant Tyr-Br was stable under ambient air conditions and underwent melanin-like oxidation only in the presence of tyrosinase to form an initiator film on various substrates. Subsequently, an antifouling polymer brush was formed using air-tolerant activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) of zwitterionic carboxybetaine. The entire surface coating procedure, including the initiator layer formation and ARGET ATRP, occurred under aqueous conditions and did not require organic solvents or chemical oxidants. Therefore, antifouling polymer brushes can be feasibly formed not only on experimentally preferred substrates (e.g., Au, SiO2, and TiO2) but also on polymeric substrates such as poly(ethylene terephthalate) (PET), cyclic olefin copolymer (COC), and nylon.
Collapse
Affiliation(s)
- Jaehoon Jeong
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Himani Bisht
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Suho Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Yubin Hong
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Gijeong Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Daewha Hong
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
5
|
Hong Y, Kim B, Jeong J, Bisht H, Park S, Hong D. Antifouling Surface Coating on Various Substrates by Inducing Tyrosinase-Mediated Oxidation of a Tyrosine-Conjugated Sulfobetaine Derivative. Biomacromolecules 2022; 23:4349-4356. [PMID: 36049071 DOI: 10.1021/acs.biomac.2c00804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inspired by the melanogenesis occurring in nature, we report tyrosinase-mediated antifouling surface coating by synthesizing a tyrosine-conjugated sulfobetaine derivative (Tyr-SB). Synthetic Tyr-SB contains zwitterionic sulfobetaine and tyrosine, whose phenolic amine group acts as a dormant coating precursor. In contrast to catecholamine derivatives, tyrosine derivatives are stable against auto-oxidation and are enzymatically oxidized only in the presence of tyrosinase to initiate melanin-like oxidation. When the surface of interest was applied during the course of Tyr-SB oxidation, a superhydrophilic poly(Tyr-SB) film was coated on the surfaces, thereby showing antifouling performance against proteins or adherent cells. Because the oxidation of Tyr-SB occurred under mild aqueous conditions (pH 6-7) without the use of any chemical oxidants, such as sodium periodate or ammonium persulfate, we anticipate that the coating method described herein will serve as a biocompatible tool in the field of biosensors, cell surface engineering, and medical devices, whose interfaces differ in chemistry.
Collapse
Affiliation(s)
- Yubin Hong
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Byeol Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Jaehoon Jeong
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Himani Bisht
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Suho Park
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Daewha Hong
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|