1
|
Mohan T, Gürer F, Bračič D, Lackner F, Nagaraj C, Maver U, Gradišnik L, Finšgar M, Kargl R, Kleinschek KS. Functionalization of Polycaprolactone 3D Scaffolds with Hyaluronic Acid Glycine-Peptide Conjugates and Endothelial Cell Adhesion. Biomacromolecules 2025; 26:1771-1787. [PMID: 39988967 PMCID: PMC11898084 DOI: 10.1021/acs.biomac.4c01559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
This study enhances the bioactivity of polycaprolactone (PCL) scaffolds for tissue engineering by functionalizing them with oxidized hyaluronic acid glycine-peptide conjugates to improve endothelial cell adhesion and growth. Hyaluronic acid was conjugated with a glycine-peptide to create a bioactive interface on PCL (static water contact angle, SCA(H2O): 98°). The scaffolds were fabricated using a melt extrusion 3D printing technique. The HA-glycine peptide conjugates were oxidized and immobilized on aminolyzed PCL via Schiff-base chemistry, introducing hydrophilicity (SCA(H2O): 21°), multiple functional groups, and a negative zeta potential (-12.04 mV at pH 7.4). A quartz crystal microbalance confirmed chemical conjugation and quantified the mass (8.5-10.3 mg m-2) of oxidized HA-glycine on PCL. The functionalized scaffolds showed enhanced swelling, improved mechanical properties (2-fold increase in strength, from 26 to 51 MPa), and maintained integrity during degradation. In-vitro experiments demonstrated improved endothelial cell adhesion, proliferation and viability, suggesting the potential for vascularized tissue constructs.
Collapse
Affiliation(s)
- Tamilselvan Mohan
- Graz
University of Technology, Institute of Chemistry
and Technology of Biobased System, Stremayrgasse 9, 8010 Graz, Austria
- University
of Maribor, Faculty of Mechanical Engineering,
Laboratory for Characterisation and Processing of Polymers, Smetanova ulica17, 2000 Maribor, Slovenia
- Members
of the European Polysaccharide Network of Excellence (EPNOE), Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Fazilet Gürer
- University
of Maribor, Faculty of Mechanical Engineering,
Laboratory for Characterisation and Processing of Polymers, Smetanova ulica17, 2000 Maribor, Slovenia
- Members
of the European Polysaccharide Network of Excellence (EPNOE), Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Doris Bračič
- University
of Maribor, Faculty of Mechanical Engineering,
Laboratory for Characterisation and Processing of Polymers, Smetanova ulica17, 2000 Maribor, Slovenia
- Members
of the European Polysaccharide Network of Excellence (EPNOE), Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Florian Lackner
- Graz
University of Technology, Institute of Chemistry
and Technology of Biobased System, Stremayrgasse 9, 8010 Graz, Austria
| | - Chandran Nagaraj
- Department
of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8010 Graz, Austria
| | - Uroš Maver
- University
of Maribor, Faculty of Medicine,
Institute of Biomedical Sciences, Taborska Ulica 8, 2000 Maribor, Slovenia
- Members
of the European Polysaccharide Network of Excellence (EPNOE), Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Lidija Gradišnik
- University
of Maribor, Faculty of Medicine,
Institute of Biomedical Sciences, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Matjaž Finšgar
- University
of Maribor, Faculty of Chemistry
and Chemical Engineering, Laboratory for Analytical Chemistry and
Industrial Analysis, Smetanova
ulica 17, 2000 Maribor, Slovenia
| | - Rupert Kargl
- Graz
University of Technology, Institute of Chemistry
and Technology of Biobased System, Stremayrgasse 9, 8010 Graz, Austria
- University
of Maribor, Faculty of Mechanical Engineering,
Laboratory for Characterisation and Processing of Polymers, Smetanova ulica17, 2000 Maribor, Slovenia
| | - Karin Stana Kleinschek
- Graz
University of Technology, Institute of Chemistry
and Technology of Biobased System, Stremayrgasse 9, 8010 Graz, Austria
- University
of Maribor, Institute of Automation,
Faculty of Electrical Engineering and Computer Science, Koroska cesta 46, 2000 Maribor, Slovenia
- Members
of the European Polysaccharide Network of Excellence (EPNOE), Celestijnenlaan 200 F, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Rayat Pisheh H, Nojabaei FS, Darvishi A, Rayat Pisheh A, Sani M. Cardiac tissue engineering: an emerging approach to the treatment of heart failure. Front Bioeng Biotechnol 2024; 12:1441933. [PMID: 39211011 PMCID: PMC11357970 DOI: 10.3389/fbioe.2024.1441933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Heart failure is a major health problem in which the heart is unable to pump enough blood to meet the body's needs. It is a progressive disease that becomes more severe over time and can be caused by a variety of factors, including heart attack, cardiomyopathy and heart valve disease. There are various methods to cure this disease, which has many complications and risks. The advancement of knowledge and technology has proposed new methods for many diseases. One of the promising new treatments for heart failure is tissue engineering. Tissue engineering is a field of research that aims to create living tissues and organs to replace damaged or diseased tissue. The goal of tissue engineering in heart failure is to improve cardiac function and reduce the need for heart transplantation. This can be done using the three important principles of cells, biomaterials and signals to improve function or replace heart tissue. The techniques for using cells and biomaterials such as electrospinning, hydrogel synthesis, decellularization, etc. are diverse. Treating heart failure through tissue engineering is still under development and research, but it is hoped that there will be no transplants or invasive surgeries in the near future. In this study, based on the most important research in recent years, we will examine the power of tissue engineering in the treatment of heart failure.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sadat Nojabaei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ahmad Darvishi
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rayat Pisheh
- Department of Biology, Payam Noor University (PUN), Shiraz, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Nan H, Gou Y, Bao C, Zhou H, Qian H, Zan X, Li L, Xue E. Presenting dual-functional peptides on implant surface to direct in vitro osteogenesis and in vivo osteointegration. Mater Today Bio 2024; 27:101108. [PMID: 38948091 PMCID: PMC11214188 DOI: 10.1016/j.mtbio.2024.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
The complex biological process of osseointegration and the bio-inertness of bone implants are the major reasons for the high failure rate of long-term implants, and have also promoted the rapid development of multifunctional implant coatings in recent years. Herein, through the special design of peptides, we use layer-by-layer assembly technology to simultaneously display two peptides with different biological functions on the implant surface to address this issue. A variety of surface characterization techniques (ellipsometry, atomic force microscopy, photoelectron spectroscopy, dissipation-quartz crystal microbalance) were used to study in detail the preparation process of the dual peptide functional coating and the physical and chemical properties, such as the composition, mechanical modulus, stability, and roughness of the coating. Compared with single peptide functional coatings, dual-peptide functionalized coatings had much better performances on antioxidant, cellular adhesion in early stage, proliferation and osteogenic differentiation in long term, as well as in vivo osteogenesis and osseointegration capabilities. These findings will promote the development of multifunctional designs in bone implant coatings, as a coping strategy for the complexity of biological process during osteointegration.
Collapse
Affiliation(s)
- Hui Nan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Yong Gou
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Chunkai Bao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Hangjin Zhou
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Haoran Qian
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Xingjie Zan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Lianxin Li
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Enxing Xue
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Rana MM, De la Hoz Siegler H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels 2024; 10:216. [PMID: 38667635 PMCID: PMC11049329 DOI: 10.3390/gels10040216] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels, being hydrophilic polymer networks capable of absorbing and retaining aqueous fluids, hold significant promise in biomedical applications owing to their high water content, permeability, and structural similarity to the extracellular matrix. Recent chemical advancements have bolstered their versatility, facilitating the integration of the molecules guiding cellular activities and enabling their controlled activation under time constraints. However, conventional synthetic hydrogels suffer from inherent weaknesses such as heterogeneity and network imperfections, which adversely affect their mechanical properties, diffusion rates, and biological activity. In response to these challenges, hybrid hydrogels have emerged, aiming to enhance their strength, drug release efficiency, and therapeutic effectiveness. These hybrid hydrogels, featuring improved formulations, are tailored for controlled drug release and tissue regeneration across both soft and hard tissues. The scientific community has increasingly recognized the versatile characteristics of hybrid hydrogels, particularly in the biomedical sector. This comprehensive review delves into recent advancements in hybrid hydrogel systems, covering the diverse types, modification strategies, and the integration of nano/microstructures. The discussion includes innovative fabrication techniques such as click reactions, 3D printing, and photopatterning alongside the elucidation of the release mechanisms of bioactive molecules. By addressing challenges, the review underscores diverse biomedical applications and envisages a promising future for hybrid hydrogels across various domains in the biomedical field.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada;
- Centre for Blood Research, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|