1
|
Raczyńska ED, Gal JF, Maria PC. Potential Push-Pull Carbon Superbases Based on Methyl Substitution of Rare Tautomers of Imines. Molecules 2025; 30:474. [PMID: 39942579 PMCID: PMC11821125 DOI: 10.3390/molecules30030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Push-pull imines with strong electron donor group(s) display exceptional basicity in the gas phase. Most of them do not exhibit prototropic tautomerism, and gas-phase acid-base equilibria have been already well described and reviewed. Some questions remain for tautomeric systems, particularly for their uncommon forms. As shown by quantum-chemical calculations, some often-neglected tautomers display higher basicity than the thermodynamically favored forms. However, their participation in tautomeric mixtures being in equilibrium is negligible, and their basicity can be impossible to measure in the gas phase by the equilibrium method. During this work, we examined the gas-phase proton basicity for some acyclic and cyclic push-pull organic bases containing the tautomeric amidine or guanidine group. By quantum-chemical calculations, we confirmed the existence of very low amounts of rare tautomeric forms, in particular, those bearing a methylidene (=CH2) group. We also demonstrated that the alkyl derivatives of rare tautomers, being free of prototropy, can be good candidates as very strong push-pull C bases, i.e., bases protonated on the =CH2 group.
Collapse
Affiliation(s)
- Ewa Daniela Raczyńska
- Department of Chemistry, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Jean-François Gal
- Institut de Chimie de Nice, UMR 7272, Université Côte d’Azur, Parc Valrose, 06108 Nice, France; (J.-F.G.); (P.-C.M.)
| | - Pierre-Charles Maria
- Institut de Chimie de Nice, UMR 7272, Université Côte d’Azur, Parc Valrose, 06108 Nice, France; (J.-F.G.); (P.-C.M.)
| |
Collapse
|
2
|
Richardson V, Sundelin D, Romanzin C, Thissen R, Alcaraz C, Polášek M, Guillemin JC, Žabka J, Geppert WD, Ascenzi D. Combined experimental and computational study of the reactivity of the methanimine radical cation (H 2CNH˙ +) and its isomer aminomethylene (HCNH 2˙ +) with propene (CH 3CHCH 2). Phys Chem Chem Phys 2024; 26:22990-23002. [PMID: 39171672 DOI: 10.1039/d4cp02002b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The gas phase reactivity of the radical cation isomers H2CNH˙+ (methanimine) and HCNH2˙+ (aminomethylene) with propene (CH3CHCH2) has been investigated by measuring absolute reactive cross sections and product branching ratios, under single collision conditions, as a function of collision energy (in the range ∼0.07-11.80 eV) using guided ion beam mass spectrometry coupled with VUV photoionization for selective isomer generation. Experimental results have been merged with theoretical calculations to elucidate reaction pathways and structures of products. The H2CNH˙+ isomer is over a factor two more reactive than HCNH2˙+. A major channel from both isomers is production of protonated methanimine CH2NH2+via hydrogen-atom transfer reaction but, while H2CNH˙+ additionally gives charge and proton transfer products, the HCNH2˙+ isomer leads instead to protonated vinylimine CH2CHCHNH2+, produced alongside CH3˙ radicals. The reactions have astrochemical implications in the build up of chemical complexity in both the interstellar medium and the hydrocarbon-rich atmospheres of planets and satellites.
Collapse
Affiliation(s)
- Vincent Richardson
- Department of Physics, The Oliver Lodge, University of Liverpool, Oxford St, Liverpool, L69 7ZE, UK.
- Department of Physics, University of Trento, Via Sommarive 14, I-38123, Trento, Italy.
| | - David Sundelin
- Department of Physics, Stockholm University, Stockholm, Sweden
| | - Claire Romanzin
- Institut de Chimie Physique, UMR8000, CNRS, Université Paris-Saclay, Orsay, France
- Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin, France
| | - Roland Thissen
- Institut de Chimie Physique, UMR8000, CNRS, Université Paris-Saclay, Orsay, France
- Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin, France
| | - Christian Alcaraz
- Institut de Chimie Physique, UMR8000, CNRS, Université Paris-Saclay, Orsay, France
- Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin, France
| | - Miroslav Polášek
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Jean-Claude Guillemin
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Jan Žabka
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Wolf D Geppert
- Department of Physics, Stockholm University, Stockholm, Sweden
| | - Daniela Ascenzi
- Department of Physics, University of Trento, Via Sommarive 14, I-38123, Trento, Italy.
| |
Collapse
|
3
|
Raczyńska ED, Gal JF, Maria PC. Strong Bases and beyond: The Prominent Contribution of Neutral Push-Pull Organic Molecules towards Superbases in the Gas Phase. Int J Mol Sci 2024; 25:5591. [PMID: 38891779 PMCID: PMC11172071 DOI: 10.3390/ijms25115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
In this review, the principles of gas-phase proton basicity measurements and theoretical calculations are recalled as a reminder of how the basicity PA/GB scale, based on Brønsted-Lowry theory, was constructed in the gas-phase (PA-proton affinity and/or GB-gas-phase basicity in the enthalpy and Gibbs energy scale, respectively). The origins of exceptionally strong gas-phase basicity of some organic nitrogen bases containing N-sp3 (amines), N-sp2 (imines, amidines, guanidines, polyguanides, phosphazenes), and N-sp (nitriles) are rationalized. In particular, the role of push-pull nitrogen bases in the development of the gas-phase basicity in the superbasicity region is emphasized. Some reasons for the difficulties in measurements for poly-functional nitrogen bases are highlighted. Various structural phenomena being in relation with gas-phase acid-base equilibria that should be considered in quantum-chemical calculations of PA/GB parameters are discussed. The preparation methods for strong organic push-pull bases containing a N-sp2 site of protonation are briefly reviewed. Finally, recent trends in research on neutral organic superbases, leaning toward catalytic and other remarkable applications, are underlined.
Collapse
Affiliation(s)
- Ewa Daniela Raczyńska
- Department of Chemistry, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Jean-François Gal
- Institut de Chimie de Nice, UMR 7272, Université Côte d’Azur, Parc Valrose, 06108 Nice, France;
| | - Pierre-Charles Maria
- Institut de Chimie de Nice, UMR 7272, Université Côte d’Azur, Parc Valrose, 06108 Nice, France;
| |
Collapse
|
4
|
Kulsha AV, Ragoyja EG, Ivashkevich OA. Strong Bases Design: Predicted Limits of Basicity. J Phys Chem A 2022; 126:3642-3652. [PMID: 35657384 DOI: 10.1021/acs.jpca.2c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brønsted superbases have wide applications in organic chemistry due to their ability to activate C-H bonds. The strongest neutral bases to date are substituted aminophosphazenes developed in the late 1980s by Reinhard Schwesinger. Since then, much effort has been expended to create even stronger neutral bases. In this article, the reasons for the instability of very basic compounds are investigated by means of high-level quantum-chemical calculations. Theoretical basicity limits are suggested for solutions as well as for the gas phase. A record-breaking superbase most likely to be synthesizable and stable at ambient conditions is proposed. Hexamethylphosphoramide is considered a reliable ionizing solvent for superbases.
Collapse
Affiliation(s)
- Andrey V Kulsha
- Chemical Department, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Republic of Belarus
| | - Ekaterina G Ragoyja
- Chemical Department, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Republic of Belarus
| | - Oleg A Ivashkevich
- Laboratory for Chemistry of Condensed Systems, Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya Street, 220006 Minsk, Republic of Belarus
| |
Collapse
|
5
|
Push–Pull Effect on the Gas-Phase Basicity of Nitriles: Transmission of the Resonance Effects by Methylenecyclopropene and Cyclopropenimine π-Systems Substituted by Two Identical Strong Electron Donors. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The gas-phase basicity of nitriles can be enhanced by a push–pull effect. The role of the intercalated scaffold between the pushing group (electron-donor) and the pulling (electron-acceptor) nitrile group is crucial in the basicity enhancement, simultaneously having a transmission function and an intrinsic contribution to the basicity. In this study, we examine the methylenecyclopropene and the N-analog, cyclopropenimine, as the smallest cyclic π systems that can be considered for resonance propagation in a push–pull system, as well as their derivatives possessing two strong pushing groups (X) attached symmetrically to the cyclopropene scaffold. For basicity and push–pull effect investigations, we apply theoretical methods (DFT and G2). The effects of geometrical and rotational isomerism on the basicity are explored. We establish that the protonation of the cyano group is always favored. The push–pull effect of strong electron donor X substituents is very similar and the two π-systems appear to be good relays for this effect. The effects of groups in the two cyclopropene series are found to be proportional to the effects in the directly substituted nitrile series X–C≡N. In parallel to the basicity, changes in electron delocalization caused by protonation are also assessed on the basis of aromaticity indices. The calculated proton affinities of the nitrile series reported in this study enrich the gas-phase basicity scale of nitriles to around 1000 kJ mol−1.
Collapse
|
6
|
Briš A, Glasovac Z, Margetić D. Gas-phase basicity of cyclic guanidine derivatives – a DFT study. NEW J CHEM 2021. [DOI: 10.1039/d0nj04589f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations (B3LYP) were employed in the study of gas-phase basicity (GB) and pKa of three different types of cyclic guanidines differing in the number of nitrogen atoms incorporated in rings.
Collapse
Affiliation(s)
- Anamarija Briš
- Laboratory for Physical-organic Chemistry, Division of Organic Chemistry and Biochemistry
- Ruđer Bošković Institute
- Zagreb
- Croatia
| | - Zoran Glasovac
- Laboratory for Physical-organic Chemistry, Division of Organic Chemistry and Biochemistry
- Ruđer Bošković Institute
- Zagreb
- Croatia
| | - Davor Margetić
- Laboratory for Physical-organic Chemistry, Division of Organic Chemistry and Biochemistry
- Ruđer Bošković Institute
- Zagreb
- Croatia
| |
Collapse
|
7
|
Khademloo E, Saeidian H, Mirjafary Z, Aliabad JM. Design of Robust Organosuperbases and Anion Receptors by Combination of Azine Heterocycle Skeleton and Phosphazene Motif. ChemistrySelect 2019. [DOI: 10.1002/slct.201803958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elham Khademloo
- Department of ChemistryScience and Research BranchIslamic Azad University Tehran Iran
| | - Hamid Saeidian
- Department of SciencePayame Noor University (PNU) P.O. Box: 19395–4697 Tehran Iran
| | - Zohreh Mirjafary
- Department of ChemistryScience and Research BranchIslamic Azad University Tehran Iran
| | | |
Collapse
|
8
|
Despotović I. Basicity of Some Pyridinophanes in Gas Phase and Acetonitrile – a DFT Study. ChemistrySelect 2018. [DOI: 10.1002/slct.201801449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ines Despotović
- Division of Physical ChemistryRuđer Bošković Institute, Bijenička 54 HR-10002 Zagreb Croatia
| |
Collapse
|
9
|
Raczyńska ED, Gal JF, Maria PC, Michalec P, Zalewski M. Exceptionally High Proton and Lithium Cation Gas-Phase Basicity of the Anti-Diabetic Drug Metformin. J Phys Chem A 2017; 121:8706-8718. [DOI: 10.1021/acs.jpca.7b09338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ewa D. Raczyńska
- Department
of Chemistry, Warsaw University of Life Science, ul. Nowoursynowska
159c, 02-776 Warszawa, Poland
| | - Jean-François Gal
- Institut
de Chimie de Nice, UMR 7272, Université Côte d’Azur, Parc Valrose, 06108 Nice, France
| | - Pierre-Charles Maria
- Institut
de Chimie de Nice, UMR 7272, Université Côte d’Azur, Parc Valrose, 06108 Nice, France
| | - Piotr Michalec
- Department
of Chemistry, Warsaw University of Life Science, ul. Nowoursynowska
159c, 02-776 Warszawa, Poland
| | - Marcin Zalewski
- Department
of Chemistry, Warsaw University of Life Science, ul. Nowoursynowska
159c, 02-776 Warszawa, Poland
| |
Collapse
|
10
|
Raczyńska ED, Gal JF, Maria PC. Enhanced Basicity of Push-Pull Nitrogen Bases in the Gas Phase. Chem Rev 2016; 116:13454-13511. [PMID: 27739663 DOI: 10.1021/acs.chemrev.6b00224] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrogen bases containing one or more pushing amino-group(s) directly linked to a pulling cyano, imino, or phosphoimino group, as well as those in which the pushing and pulling moieties are separated by a conjugated spacer (C═X)n, where X is CH or N, display an exceptionally strong basicity. The n-π conjugation between the pushing and pulling groups in such systems lowers the basicity of the pushing amino-group(s) and increases the basicity of the pulling cyano, imino, or phosphoimino group. In the gas phase, most of the so-called push-pull nitrogen bases exhibit a very high basicity. This paper presents an analysis of the exceptional gas-phase basicity, mostly in terms of experimental data, in relation with structure and conjugation of various subfamilies of push-pull nitrogen bases: nitriles, azoles, azines, amidines, guanidines, vinamidines, biguanides, and phosphazenes. The strong basicity of biomolecules containing a push-pull nitrogen substructure, such as bioamines, amino acids, and peptides containing push-pull side chains, nucleobases, and their nucleosides and nucleotides, is also analyzed. Progress and perspectives of experimental determinations of GBs and PAs of highly basic compounds, termed as "superbases", are presented and benchmarked on the basis of theoretical calculations on existing or hypothetical molecules.
Collapse
Affiliation(s)
- Ewa D Raczyńska
- Department of Chemistry, Warsaw University of Life Sciences (SGGW) , ul. Nowoursynowska 159c, 02-776 Warszawa, Poland
| | - Jean-François Gal
- Institut de Chimie de Nice (ICN) - UMR CNRS 7272, University Nice Sophia Antipolis , Parc Valrose, 06108 Nice Cedex 2, France
| | - Pierre-Charles Maria
- Institut de Chimie de Nice (ICN) - UMR CNRS 7272, University Nice Sophia Antipolis , Parc Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|