1
|
Lundberg DJ, Ko K, Kilgallon LJ, Johnson JA. Defining Reactivity-Deconstructability Relationships for Copolymerizations Involving Cleavable Comonomer Additives. ACS Macro Lett 2024; 13:521-527. [PMID: 38626454 DOI: 10.1021/acsmacrolett.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The incorporation of cleavable comonomers as additives into polymers can imbue traditional polymers with controlled deconstructability and expanded end-of-life options. The efficiency with which cleavable comonomer additives (CCAs) can enable deconstruction is sensitive to their local distribution within a copolymer backbone, which is dictated by their copolymerization behavior. While qualitative heuristics exist that describe deconstructability, comprehensive quantitative connections between CCA loadings, reactivity ratios, polymerization mechanisms, and deconstruction reactions on the deconstruction efficiency of copolymers containing CCAs have not been established. Here, we broadly define these relationships using stochastic simulations characterizing various polymerization mechanisms (e.g., coltrolled/living, free-radical, and reversible ring-opening polymerizations), reactivity ratio pairs (spanning 2 orders of magnitude between 0.01 and 100), CCA loadings (2.5% to 20%), and deconstruction reactions (e.g., comonomer sequence-dependent deconstruction behavior). We show general agreement between simulated and experimentally observed deconstruction fragment sizes from the literature, demonstrating the predictive power of the methods used herein. These results will guide the development of more efficient CCAs and inform the formulation of deconstructable materials.
Collapse
Affiliation(s)
- David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kwangwook Ko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Landon J Kilgallon
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Ko K, Lundberg DJ, Johnson AM, Johnson JA. Mechanism-Guided Discovery of Cleavable Comonomers for Backbone Deconstructable Poly(methyl methacrylate). J Am Chem Soc 2024; 146:9142-9154. [PMID: 38526229 DOI: 10.1021/jacs.3c14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development of cleavable comonomers (CCs) with suitable copolymerization reactivity paves the way for the introduction of backbone deconstructability into polymers. Recent advancements in thionolactone-based CCs, exemplified by dibenzo[c,e]-oxepine-5(7H)-thione (DOT), have opened promising avenues for the selective deconstruction of multiple classes of vinyl polymers, including polyacrylates, polyacrylamides, and polystyrenics. To date, however, no thionolactone CC has been shown to copolymerize with methacrylates to an appreciable extent to enable polymer deconstruction. Here, we overcome this challenge through the design of a new class of benzyl-functionalized thionolactones (bDOTs). Guided by detailed mechanistic analyses, we find that the introduction of radical-stabilizing substituents to bDOTs enables markedly increased and tunable copolymerization reactivity with methyl methacrylate (MMA). Through iterative optimizations of the molecular structure, a specific bDOT, F-p-CF3PhDOT, is discovered to copolymerize efficiently with MMA. High molar mass deconstructable PMMA-based copolymers (dPMMA, Mn > 120 kDa) with low percentages of F-p-CF3PhDOT (1.8 and 3.8 mol%) are prepared using industrially relevant bulk free radical copolymerization conditions. The thermomechanical properties of dPMMA are similar to PMMA; however, the former is shown to degrade into low molar mass fragments (<6.5 kDa) under mild aminolysis conditions. This work presents the first example of a radical ring-opening CC capable of nearly random copolymerization with MMA without the possibility of cross-linking and provides a workflow for the mechanism-guided design of deconstructable copolymers in the future.
Collapse
Affiliation(s)
- Kwangwook Ko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alayna M Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Luzel B, Gil N, Désirée P, Monot J, Bourissou D, Siri D, Gigmes D, Martin-Vaca B, Lefay C, Guillaneuf Y. Development of an Efficient Thionolactone for Radical Ring-Opening Polymerization by a Combined Theoretical/Experimental Approach. J Am Chem Soc 2023; 145:27437-27449. [PMID: 38059751 DOI: 10.1021/jacs.3c08610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The environmental impact of plastic waste has been a real problem for the past decades. The incorporation of cleavable bonds in the polymer backbone is a solution to making a commodity polymer degradable. When radical polymerization is used, this approach is made possible by radical ring-opening polymerization (rROP) of a cyclic monomer that allows for the introduction of a weak bond into the polymer backbone. Among the various cyclic monomers that could be used in rROP, thionolactones are promising structures due to the efficiency of the C═S bond to act as a radical acceptor. Nevertheless, only a few structures were reported to be efficient. In this work, we used DFT calculations to gain a better understanding of the radical reactivity of thionolactones, and in particular, we focused on the transfer rate constant ktr value and its ratio with the propagation rate constant kp of the vinyl monomer. The closer to 1, the better is the statistical incorporation of the two comonomers into the backbone. These theoretical results were in good agreement with all of the experimental data reported in the literature. We thus used this approach to understand the key parameters to tune the reactivity of thionolactone to prepare random copolymers. We identified and prepared the 7-phenyloxepane-2-thione (POT) thionolactone that led to statistical copolymers with styrene and acrylate derivatives that were efficiently degraded under accelerated conditions (KOH in THF/MeOH, TBD in THF, or mCPBA in THF), confirming the theoretical approach. The compatibility with RAFT polymerization as well as the homopolymerization behavior of POT was established. This theoretical approach paves the way for the in-silico design of new efficient thionolactones for rROP.
Collapse
Affiliation(s)
- Bastien Luzel
- Aix-Marseille University, CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Noémie Gil
- Aix-Marseille University, CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Patrick Désirée
- Aix-Marseille University, CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Julien Monot
- University of Toulouse UPS, Lab Heterochim Fondamentale & Appl UMR 5069, CNRS, 118 Route Narbonne, F-31062 Toulouse, France
| | - Didier Bourissou
- University of Toulouse UPS, Lab Heterochim Fondamentale & Appl UMR 5069, CNRS, 118 Route Narbonne, F-31062 Toulouse, France
| | - Didier Siri
- Aix-Marseille University, CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Didier Gigmes
- Aix-Marseille University, CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Blanca Martin-Vaca
- University of Toulouse UPS, Lab Heterochim Fondamentale & Appl UMR 5069, CNRS, 118 Route Narbonne, F-31062 Toulouse, France
| | - Catherine Lefay
- Aix-Marseille University, CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Yohann Guillaneuf
- Aix-Marseille University, CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
4
|
Gao Q, Wu H, Zhou Y, Xiao J, Shi Y, Cao H. Mechanism and Kinetics of Prothioconazole Photodegradation in Aqueous Solution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6594-6602. [PMID: 37075317 DOI: 10.1021/acs.jafc.3c00453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This study investigated the effects of light source, pH value, and NO3- concentration on the photodegradation of prothioconazole in aqueous solution. The half-life (t1/2) of prothioconazole was 173.29, 21.66, and 11.18 min under xenon, ultraviolet, and high-pressure mercury lamps, respectively. At pH values of 4.0, 7.0, and 9.0 under a xenon lamp light source, the t1/2 values were 693.15, 231.05, and 99.02 min, respectively. Inorganic substance NO3- clearly promoted the photodegradation of prothioconazole, with t1/2 values of 115.53, 77.02, and 69.32 min at NO3- concentrations of 1.0, 2.0, and 5.0 mg L-1, respectively. The photodegradation products were identified as C14H15Cl2N3O, C14H16ClN3OS, C14H15Cl2N3O2S, and C14H13Cl2N3 based on calculations and the Waters compound library. Furthermore, density functional theory (DFT) calculations showed that the C-S, C-Cl, C-N, and C-O bonds of prothioconazole were the reaction sites with high absolute charge values and greater bond lengths. Finally, the photodegradation pathway of prothioconazole was concluded, and the variation in energy of the photodegradation process was attributed to the decrease in activation energy caused by light excitation. This work provides new insight into the structural modification and photochemical stability improvement of prothioconazole, which plays an important role in decreasing safety risk during application that will reduce the exposure risk in field environment.
Collapse
Affiliation(s)
- Quan Gao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Hao Wu
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yeping Zhou
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jinjing Xiao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yanhong Shi
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
López‐Domínguez P, Carranco‐Hernández NM, Vivaldo‐Lima E. Kinetic Modeling of Ring Opening Polymerization of Lactones under Microwave Irradiation. MACROMOL REACT ENG 2021. [DOI: 10.1002/mren.202100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Porfirio López‐Domínguez
- Facultad de Química, Departamento de Ingeniería Química Universidad Nacional Autónoma de México Ciudad de México 04510 México
| | | | - Eduardo Vivaldo‐Lima
- Facultad de Química, Departamento de Ingeniería Química Universidad Nacional Autónoma de México Ciudad de México 04510 México
| |
Collapse
|
6
|
Coile MW, Harmon RE, Wang G, SriBala G, Broadbelt LJ. Kinetic Monte Carlo Tool for Kinetic Modeling of Linear Step‐Growth Polymerization: Insight into Recycling of Polyurethanes. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matthew W. Coile
- Department of Chemical and Biological Engineering Northwestern University Evanston IL 60208 USA
| | - Rebecca E. Harmon
- Department of Chemical and Biological Engineering Northwestern University Evanston IL 60208 USA
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Amsterdam 1098 XH The Netherlands
| | - Guanhua Wang
- Department of Chemical and Biological Engineering Northwestern University Evanston IL 60208 USA
| | - Gorugantu SriBala
- Department of Chemical and Biological Engineering Northwestern University Evanston IL 60208 USA
| | - Linda J. Broadbelt
- Department of Chemical and Biological Engineering Northwestern University Evanston IL 60208 USA
| |
Collapse
|