1
|
Siqueira AC, Bernardi GA, Arend LNVS, Cordeiro GT, Rosolen D, Berti FCB, Ferreira AMM, Vasconcelos TM, Neves BC, Rodrigues LS, Dalla-Costa LM. Azole Resistance and ERG11 Mutation in Clinical Isolates of Candida tropicalis. J Fungi (Basel) 2025; 11:24. [PMID: 39852443 PMCID: PMC11767116 DOI: 10.3390/jof11010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025] Open
Abstract
We investigated the molecular mechanisms underlying azole resistance in seven Candida tropicalis isolates that caused candidemia and candiduria in Paraná, Brazil (2016-2022). Biofilm production, antifungal susceptibility testing, multilocus sequence typing, amplification and sequencing of ERG11, and quantification of ERG11, MDR1, and CDR1 expression levels were performed. Notably, five isolates (71.4%) were from urine samples and two (28.6%) were from blood samples. All strains were biofilm producers, with levels ranging from moderate to strong. The minimum inhibitory concentration (MIC) values ranged from 8->64 mg/L for fluconazole and 0.25-1 mg/L for voriconazole. All isolates had mutations in ERG11; Y132F and Y257N were predominant (71.4%), followed by Y132F and S154F (14.3%) and Y257H (14.3%). No differences in ERG11 expression were found between the susceptible and resistant groups, but MDR1 and CDR1 were more highly expressed in the susceptible isolates. All the isolates contained previously unassigned diploid sequence types. The emergence of C. tropicalis azole resistance has been previously described in Brazil; however, the presence of resistant isolates in urine highlights the need for surveillance resistant strains in both urinary and invasive contexts. In our study mutations in ERG11 were the main resistance mechanism identified in C. tropicalis.
Collapse
Affiliation(s)
- Adriele Celine Siqueira
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba 80250-060, Brazil; (A.C.S.); (D.R.); (F.C.B.B.); (T.M.V.)
- Faculdades Pequeno Príncipe (FPP), Curitiba 80230-020, Brazil;
| | - Gisele Aparecida Bernardi
- Laboratório Central do Estado do Paraná (LACEN-PR), São José dos Pinhais 83060-500, Brazil; (G.A.B.); (L.N.V.S.A.)
| | | | - Gabrielle Tomé Cordeiro
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil; (G.T.C.); (B.C.N.)
| | - Daiane Rosolen
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba 80250-060, Brazil; (A.C.S.); (D.R.); (F.C.B.B.); (T.M.V.)
| | - Fernanda Costa Brandão Berti
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba 80250-060, Brazil; (A.C.S.); (D.R.); (F.C.B.B.); (T.M.V.)
| | | | - Thaís Muniz Vasconcelos
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba 80250-060, Brazil; (A.C.S.); (D.R.); (F.C.B.B.); (T.M.V.)
- Faculdades Pequeno Príncipe (FPP), Curitiba 80230-020, Brazil;
| | - Bianca Cruz Neves
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil; (G.T.C.); (B.C.N.)
| | - Luiza Souza Rodrigues
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba 80250-060, Brazil; (A.C.S.); (D.R.); (F.C.B.B.); (T.M.V.)
| | - Libera Maria Dalla-Costa
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba 80250-060, Brazil; (A.C.S.); (D.R.); (F.C.B.B.); (T.M.V.)
- Faculdades Pequeno Príncipe (FPP), Curitiba 80230-020, Brazil;
| |
Collapse
|
2
|
Zeitoun H, Salem RA, El-Guink NM, Tolba NS, Mohamed NM. Elucidation of the mechanisms of fluconazole resistance and repurposing treatment options against urinary Candida spp. isolated from hospitalized patients in Alexandria, Egypt. BMC Microbiol 2024; 24:383. [PMID: 39354378 PMCID: PMC11443771 DOI: 10.1186/s12866-024-03512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/10/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND The incidence of fungal urinary tract infections (UTIs) has dramatically increased in the past decades, with Candida arising as the predominant etiological agent. Managing these infections poses a serious challenge to clinicians, especially with the emergence of fluconazole-resistant (FLC-R) Candida species. In this study, we aimed to determine the mechanisms of fluconazole resistance in urinary Candida spp. isolated from hospitalized patients in Alexandria, Egypt, assess the correlation between fluconazole resistance and virulence, and explore potential treatment options for UTIs caused by FLC-R Candida strains. RESULTS Fluconazole susceptibility testing of 34 urinary Candida isolates indicated that 76.5% were FLC-R, with a higher prevalence of resistance recorded in non-albicans Candida spp. (88.9%) than in Candida albicans (62.5%). The calculated Spearman's correlation coefficients implied significant positive correlations between fluconazole minimum inhibitory concentrations and both biofilm formation and phospholipase production. Real-time PCR results revealed that most FLC-R isolates (60%) significantly overexpressed at least one efflux pump gene, while 42.3% significantly upregulated the ERG11 gene. The most prevalent mutation detected upon ERG11 sequencing was G464S, which is conclusively linked to fluconazole resistance. The five repurposed agents: amikacin, colistin, dexamethasone, ketorolac, and sulfamethoxazole demonstrated variable fluconazole-sensitizing activities in vitro, with amikacin, dexamethasone, and colistin being the most effective. However, the fluconazole/colistin combination produced a notable reduction (49.1%) in bladder bioburden, a 50% decrease in the inflammatory response, and tripled the median survival span relative to the untreated murine models. CONCLUSIONS The fluconazole/colistin combination offers a promising treatment option for UTIs caused by FLC-R Candida, providing an alternative to the high-cost, tedious process of novel antifungal drug discovery in the battle against antifungal resistance.
Collapse
Affiliation(s)
- Hend Zeitoun
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Rawan A Salem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Nadia M El-Guink
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Nesrin S Tolba
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nelly M Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt.
| |
Collapse
|
3
|
Keighley C, Kim HY, Kidd S, Chen SCA, Alastruey A, Dao A, Bongomin F, Chiller T, Wahyuningsih R, Forastiero A, Al-Nuseirat A, Beyer P, Gigante V, Beardsley J, Sati H, Morrissey CO, Alffenaar JW. Candida tropicalis-A systematic review to inform the World Health Organization of a fungal priority pathogens list. Med Mycol 2024; 62:myae040. [PMID: 38935905 PMCID: PMC11210624 DOI: 10.1093/mmy/myae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/14/2024] [Accepted: 04/29/2024] [Indexed: 06/29/2024] Open
Abstract
In response to the growing global burden of fungal infections with uncertain impact, the World Health Organization (WHO) established an Expert Group to identify priority fungal pathogens and establish the WHO Fungal Priority Pathogens List for future research. This systematic review aimed to evaluate the features and global impact of invasive candidiasis caused by Candida tropicalis. PubMed and Web of Science were searched for studies reporting on criteria of mortality, morbidity (defined as hospitalization and disability), drug resistance, preventability, yearly incidence, diagnostics, treatability, and distribution/emergence from 2011 to 2021. Thirty studies, encompassing 436 patients from 25 countries were included in the analysis. All-cause mortality due to invasive C. tropicalis infections was 55%-60%. Resistance rates to fluconazole, itraconazole, voriconazole and posaconazole up to 40%-80% were observed but C. tropicalis isolates showed low resistance rates to the echinocandins (0%-1%), amphotericin B (0%), and flucytosine (0%-4%). Leukaemia (odds ratio (OR) = 4.77) and chronic lung disease (OR = 2.62) were identified as risk factors for invasive infections. Incidence rates highlight the geographic variability and provide valuable context for understanding the global burden of C. tropicalis infections. C. tropicalis candidiasis is associated with high mortality rates and high rates of resistance to triazoles. To address this emerging threat, concerted efforts are needed to develop novel antifungal agents and therapeutic approaches tailored to C. tropicalis infections. Global surveillance studies could better inform the annual incidence rates, distribution and trends and allow informed evaluation of the global impact of C. tropicalis infections.
Collapse
Affiliation(s)
- Caitlin Keighley
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
- Southern IML Pathology, 3 Bridge St, Coniston, NSW, Australia
| | - Hannah Yejin Kim
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
| | - Sarah Kidd
- National Mycology Reference Centre, Microbiology & Infectious Diseases, SA Pathology, Adelaide, SA, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Sharon C-A Chen
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
| | - Ana Alastruey
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Aiken Dao
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
| | - Felix Bongomin
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GE, USA
| | - Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | - Agustina Forastiero
- Servicio de Micologia, Laboratorio de Microbiologia, Hospital Britanico, Buenos Aires, Argentina
| | - Adi Al-Nuseirat
- World Health Organization Regional Office for the Eastern Mediterranean, Cairo 11371, Egypt
| | - Peter Beyer
- AMR Division, World Health Organization, Geneva
| | | | - Justin Beardsley
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
| | - Hatim Sati
- AMR Division, World Health Organization, Geneva
| | - C Orla Morrissey
- The Alfred Hospital, Department of Infectious Diseases, Melbourne, Victoria, Australia
- Monash University, Department of Infectious Diseases, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Melbourne, Victoria, Australia
| | - Jan-Willem Alffenaar
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
4
|
Wang Y, Wan X, Zhao L, Jin P, Zhang J, Zhou X, Ye N, Wang X, Pan Y, Xu L. Clonal aggregation of fluconazole-resistant Candida tropicalis isolated from sterile body fluid specimens from patients in Hefei, China. Med Mycol 2023; 61:myad097. [PMID: 37777835 DOI: 10.1093/mmy/myad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023] Open
Abstract
Candida tropicalis, a human conditionally pathogenic yeast, is distributed globally, especially in Asia-Pacific. The increasing morbidity and azole resistance of C. tropicalis have made clinical treatment difficult. The correlation between clonality and antifungal susceptibility of clinical C. tropicalis isolates has been reported. To study the putative correlation in C. tropicalis isolated from normally sterile body fluid specimens and explore the distinct clonal complex (CC) in Hefei, 256 clinical C. tropicalis isolates were collected from four teaching hospitals during 2016-2019, of which 30 were fluconazole-resistant (FR). Genetic profiles of 63 isolates, including 30 FR isolates and 33 fluconazole-susceptible (FS) isolates, were characterized using multilocus sequence typing (MLST). Phylogenetic analysis of the data was conducted using UPGMA (unweighted pair group method with arithmetic averages) and the minimum spanning tree algorithm. MLST clonal complexes (CCs) were analyzed using the goeBURST package. Among 35 differentiated diploid sequence types (DSTs), 16 DSTs and 1 genotype were identified as novel. A total of 35 DSTs were assigned to five major CCs based on goeBURST analysis. CC1 (containing DST376, 505, 507, 1221, 1222, 1223, 1226, and 1229) accounted for 86.7% (26/30) of the FR isolates. However, the genetic relationships among the FS isolates were relatively decentralized. The local FR CC1 belongs to a large fluconazole non-susceptible CC8 in global isolates, of which the putative founder genotype was DST225. The putative correlation between MLST types and antifungal susceptibility of clinical C. tropicalis isolates in Hefei showed that DSTs are closely related to FR clones.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Xin Wan
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Li Zhao
- Department of Urology, Anhui Zhongke Gengjiu Hospital, Hefei, China
| | - Peipei Jin
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Ju Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Xin Zhou
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Naifang Ye
- Department of Clinical Laboratory Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiaowei Wang
- Department of Clinical Laboratory Medicine, The First Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yaping Pan
- Department of Clinical Laboratory Medicine, High Tech Branch of The First Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Liangfei Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| |
Collapse
|
5
|
Bilal H, Shafiq M, Hou B, Islam R, Khan MN, Khan RU, Zeng Y. Distribution and antifungal susceptibility pattern of Candida species from mainland China: A systematic analysis. Virulence 2022; 13:1573-1589. [PMID: 36120738 PMCID: PMC9487756 DOI: 10.1080/21505594.2022.2123325] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/07/2022] [Accepted: 09/07/2022] [Indexed: 02/05/2023] Open
Abstract
Antifungal resistance to Candida pathogens increases morbidity and mortality of immunosuppressive patients, an emerging crisis worldwide. Understanding the Candida prevalence and antifungal susceptibility pattern is necessary to control and treat candidiasis. We aimed to systematically analyse the susceptibility profiles of Candida species published in the last ten years (December 2011 to December 2021) from mainland China. The studies were collected from PubMed, Google Scholar, and Science Direct search engines. Out of 89 included studies, a total of 44,716 Candida isolates were collected, mainly comprising C. albicans (49.36%), C. tropicalis (21.89%), C. parapsilosis (13.92%), and C. glabrata (11.37%). The lowest susceptibility was detected for azole group; fluconazole susceptibilities against C. parapsilosis, C. albicans, C. glabrata, C. tropicalis, C. guilliermondii, C. pelliculosa, and C. auris were 93.25%, 91.6%, 79.4%, 77.95%, 76%, 50%, and 0% respectively. Amphotericin B and anidulafungin were the most susceptible drugs for all Candida species. Resistance to azole was mainly linked with mutations in ERG11, ERG3, ERG4, MRR1-2, MSH-2, and PDR-1 genes. Mutation in FKS-1 and FKS-2 in C. auris and C. glabrata causing resistance to echinocandins was stated in two studies. Gaps in the studies' characteristics were detected, such as 79.77%, 47.19 %, 26.97%, 7.86%, and 4.49% studies did not mention the mortality rates, age, gender, breakpoint reference guidelines, and fungal identification method, respectively. The current study demonstrates the overall antifungal susceptibility pattern of Candida species, gaps in surveillance studies and risk-reduction strategies that could be supportive in candidiasis therapy and for the researchers in their future studies.
Collapse
Affiliation(s)
- Hazrat Bilal
- Department of Dermatology, The second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Bing Hou
- Department of laboratory, Shantou Municipal Skin Hospital, Shantou, China
| | - Rehmat Islam
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Muhammad Nadeem Khan
- Faculty of Biological Sciences, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rahat Ullah Khan
- Institute of Microbiology, Faculty of Veterinary and Animal Sciences Gomal University, Dera Ismail Khan, Pakistan
| | - Yuebin Zeng
- Department of Dermatology, The second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
6
|
Boonsilp S, Homkaew A, Phumisantiphong U, Nutalai D, Wongsuk T. Species Distribution, Antifungal Susceptibility, and Molecular Epidemiology of Candida Species Causing Candidemia in a Tertiary Care Hospital in Bangkok, Thailand. J Fungi (Basel) 2021; 7:jof7070577. [PMID: 34356956 PMCID: PMC8303137 DOI: 10.3390/jof7070577] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/29/2022] Open
Abstract
Candida species represent a common cause of bloodstream infection (BSI). Given the emergence of non-albicans Candida (NAC) associated with treatment failure, investigations into the species distribution, fungal susceptibility profile, and molecular epidemiology of pathogens are necessary to optimize the treatment of candidemia and explore the transmission of drug resistance for control management. This study evaluated the prevalence, antifungal susceptibility, and molecular characteristics of Candida species causing BSI in a tertiary-level hospital in Bangkok, Thailand. In total, 54 Candida isolates were recovered from 49 patients with candidemia. C. tropicalis was the most prevalent species (33.3%), followed by C. albicans (29.6%). Most Candida species were susceptible to various antifungal agents, excluding C. glabrata and C. tropicalis, which had increased rates of non-susceptibility to azoles. Most C. glabrata isolates were non-susceptible to echinocandins, especially caspofungin. The population structure of C. albicans was highly diverse, with clade 17 predominance. GoeBURST analysis of C. tropicalis revealed associations between genotype and fluconazole resistance in a particular clonal complex. The population structure of C. glabrata appeared to have a low level of genetic diversity in MLST loci. Collectively, these data might provide a fundamental database contributing to the development of novel antifungal agents and diagnostic tests.
Collapse
Affiliation(s)
- Siriphan Boonsilp
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand;
- Correspondence: (S.B.); (T.W.)
| | - Anchalee Homkaew
- Division of Central Laboratory and Blood Bank, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand; (A.H.); (D.N.)
| | - Uraporn Phumisantiphong
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand;
- Division of Central Laboratory and Blood Bank, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand; (A.H.); (D.N.)
| | - Daranee Nutalai
- Division of Central Laboratory and Blood Bank, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand; (A.H.); (D.N.)
| | - Thanwa Wongsuk
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand;
- Correspondence: (S.B.); (T.W.)
| |
Collapse
|
7
|
Wang Y, Zhao X, Cheng J, Tang X, Chen X, Yu H, Li S. Development and Application of a Multiple Cross Displacement Amplification Combined With Nanoparticle-Based Lateral Flow Biosensor Assay to Detect Candida tropicalis. Front Microbiol 2021; 12:681488. [PMID: 34177867 PMCID: PMC8222920 DOI: 10.3389/fmicb.2021.681488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 12/27/2022] Open
Abstract
Candida tropicalis is an increasingly opportunistic pathogen that causes serious invasive candidiasis threatening a patient’s life. Traditional methods to detect C. tropicalis infection depends on time-consuming, culture-based gold-standard methods. So, we sought to establish a new method that could detect target pathogens quickly, accurately, and straightforwardly. Herein, a combination of multiple cross displacement amplification (MCDA) and lateral flow biosensors (LFB) was employed to detect C. tropicalis. In the MCDA system, 10 primers were designed to identify the specific genes of C. tropicalis and amplify the genes in an isothermal amplification device. Then, MCDA amplification reaction products could be identified visibly by color change, and all the amplification products would be tested by LFB with no special equipment. The results demonstrated that the optimal reaction condition of C. tropicalis-MCDA assay was 64°C within 30 min, and only 10 fg DNA was required in each reaction. No cross-reaction was found between C. tropicalis strains and non-C. tropicalis strains. For 300 sputum samples, the results showed that MCDA-LFB assay could rapidly and successfully detect all of the C. tropicalis-positive (28/300) samples detected by the gold-standard method. The entire procedure, including specimen processing (40 min), isothermal reaction (30 min) and result reporting (within 2 min), could be completed within 75 min. Briefly, the study results demonstrated that the detection ability of C. tropicalis-MCDA-LFB assay was better than culture methods with more simplicity, rapidity, sensitivity and specificity. Hence, MCDA-LFB strategy is an effective tool to rapidly detect C. tropicalis in clinical samples, especially in resource-poor areas.
Collapse
Affiliation(s)
- Yu Wang
- Department of Clinical Laboratory, The First People's Hospital of Guiyang, Guiyang, China.,Laboratory of Bacterial Infectious Disease of Experimental Center, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Xue Zhao
- Department of Clinical Laboratory, The First People's Hospital of Guiyang, Guiyang, China
| | - Jinzhi Cheng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiaomin Tang
- Laboratory of Bacterial Infectious Disease of Experimental Center, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Xu Chen
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Honglan Yu
- Department of Clinical Laboratory, The First People's Hospital of Guiyang, Guiyang, China
| | - Shijun Li
- Laboratory of Bacterial Infectious Disease of Experimental Center, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| |
Collapse
|
8
|
Wang Q, Li C, Tang D, Tang K. Molecular epidemiology of Candida tropicalis isolated from urogenital tract infections. Microbiologyopen 2020; 9:e1121. [PMID: 32985133 PMCID: PMC7658454 DOI: 10.1002/mbo3.1121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022] Open
Abstract
Candida tropicalis is a common human pathogenic yeast, and its molecular typing is important for studying the population structure and epidemiology of this opportunistic yeast, such as epidemic genotype, population dynamics, nosocomial infection, and drug resistance surveillance. In this study, the antifungal susceptibility test and multilocus sequence typing (MLST) analysis were carried out on C. tropicalis from central China. Among 64 urogenital isolates, 45 diploid sequence types (DST) were found, of which 20 DSTs (44.4%) were new to the central database. The goeBURST analysis showed that CC1 (clonal complex) was the only azole‐resistant (100%, 10/10) cluster in Wuhan, which was composed of DST546, DST225, DST376, and DST506, and most of the strains (90%, 9/10) were isolated from the urinary tract. Potential nosocomial infections were mainly caused by CC1 strains. The azole resistance rate of urinary isolates (50.0%, 21/42) was higher than that of vaginal isolates (27.3%, 6/22). The genotype diversity and novelty of vaginal isolates were higher than those of urinary isolates. C. tropicalis population in Wuhan was genetically diverse and divergent from that seen in other countries. In this study, there were significant differences in genotype and azole susceptibility between urine and vaginal strains. The azole‐resistant cluster (CC1) found in urine is of great significance for the clinical treatment and prevention of nosocomial infection. The newly discovered DSTs will contribute to further study the similarity, genetic relationship, and molecular epidemiology of C. tropicalis worldwide.
Collapse
Affiliation(s)
- Qianyu Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Congrong Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongling Tang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kewen Tang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|