1
|
Cohen A, Turjeman S, Levin R, Tal S, Koren O. Comparison of canine colostrum and milk using a multi-omics approach. Anim Microbiome 2024; 6:19. [PMID: 38650014 PMCID: PMC11034113 DOI: 10.1186/s42523-024-00309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND A mother's milk is considered the gold standard of nutrition in neonates and is a source of cytokines, immunoglobulins, growth factors, and other important components, yet little is known about the components of canine milk, specifically colostrum, and the knowledge related to its microbial and metabolic profiles is particularly underwhelming. In this study, we characterized canine colostrum and milk microbiota and metabolome for several breeds of dogs and examined profile shifts as milk matures in the first 8 days post-whelping. RESULTS Through untargeted metabolomics, we identified 63 named metabolites that were significantly differentially abundant between days 1 and 8 of lactation. Surprisingly, the microbial compositions of the colostrum and milk, characterized using 16S rRNA gene sequencing, were largely similar, with only two differentiating genera. The shifts observed, mainly increases in several sugars and amino sugars over time and shifts in amino acid metabolites, align with shifts observed in human milk samples and track with puppy development. CONCLUSION Like human milk, canine milk composition is dynamic, and shifts are well correlated with developing puppies' needs. Such a study of the metabolic profile of canine milk, and its relation to the microbial community, provides insights into the changing needs of the neonate, as well as the ideal nutrition profile for optimal functionality. This information will add to the existing knowledge base of canine milk composition with the prospect of creating a quality, tailored milk substitute or supplement for puppies.
Collapse
Affiliation(s)
- Alisa Cohen
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Rachel Levin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Smadar Tal
- Koret School of Veterinary Medicine, The Hebrew University Veterinary Teaching Hospital, Hebrew University of Jerusalem, Rehovot, Israel
- Tel-Hai Academic College, Upper Galilee, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Kyung Hee University, Seoul, the Republic of Korea.
| |
Collapse
|
2
|
Ajeeb TT, Gonzalez E, Solomons NW, Vossenaar M, Koski KG. Human milk microbiome: associations with maternal diet and infant growth. Front Nutr 2024; 11:1341777. [PMID: 38529196 PMCID: PMC10962684 DOI: 10.3389/fnut.2024.1341777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Ingestion of human milk (HM) is identified as a significant factor associated with early infant gut microbial colonization, which has been associated with infant health and development. Maternal diet has been associated with the HM microbiome (HMM). However, a few studies have explored the associations among maternal diet, HMM, and infant growth during the first 6 months of lactation. Methods For this cross-sectional study, Mam-Mayan mother-infant dyads (n = 64) were recruited from 8 rural communities in the Western Highlands of Guatemala at two stages of lactation: early (6-46 days postpartum, n = 29) or late (109-184 days postpartum, n = 35). Recruited mothers had vaginally delivered singleton births, had no subclinical mastitis or antibiotic treatments, and breastfed their infants. Data collected at both stages of lactation included two 24-h recalls, milk samples, and infant growth status indicators: head-circumference-for-age-z-score (HCAZ), length-for-age-z-score (LAZ), and weight-for-age-z-score (WAZ). Infants were divided into subgroups: normal weight (WAZ ≥ -1SD) and mildly underweight (WAZ < -1SD), non-stunted (LAZ ≥ -1.5SD) and mildly stunted (LAZ < -1.5SD), and normal head-circumference (HCAZ ≥ -1SD) and smaller head-circumference (HCAZ < -1SD). HMM was identified using 16S rRNA gene sequencing; amplicon analysis was performed with the high-resolution ANCHOR pipeline, and DESeq2 identified the differentially abundant (DA) HMM at the species-level between infant growth groups (FDR < 0.05) in both early and late lactation. Results Using both cluster and univariate analyses, we identified (a) positive correlations between infant growth clusters and maternal dietary clusters, (b) both positive and negative associations among maternal macronutrient and micronutrient intakes with the HMM at the species level and (c) distinct correlations between HMM DA taxa with maternal nutrient intakes and infant z-scores that differed between breast-fed infants experiencing growth faltering and normal growth in early and late lactation. Conclusion Collectively, these findings provide important evidence of the potential influence of maternal diet on the early-life growth of breastfed infants via modulation of the HMM.
Collapse
Affiliation(s)
- Tamara T. Ajeeb
- School of Human Nutrition, McGill University, Montreal, QC, Canada
- Department of Clinical Nutrition, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Noel W. Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Marieke Vossenaar
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | | |
Collapse
|
3
|
Spreckels JE, Fernández-Pato A, Kruk M, Kurilshikov A, Garmaeva S, Sinha T, Ghosh H, Harmsen H, Fu J, Gacesa R, Zhernakova A. Analysis of microbial composition and sharing in low-biomass human milk samples: a comparison of DNA isolation and sequencing techniques. ISME COMMUNICATIONS 2023; 3:116. [PMID: 37945978 PMCID: PMC10636111 DOI: 10.1038/s43705-023-00325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Human milk microbiome studies are currently hindered by low milk bacterial/human cell ratios and often rely on 16S rRNA gene sequencing, which limits downstream analyses. Here, we aimed to find a method to study milk bacteria and assess bacterial sharing between maternal and infant microbiota. We tested four DNA isolation methods, two bacterial enrichment methods and three sequencing methods on mock communities, milk samples and negative controls. Of the four DNA isolation kits, the DNeasy PowerSoil Pro (PS) and MagMAX Total Nucleic Acid Isolation (MX) kits provided consistent 16S rRNA gene sequencing results with low contamination. Neither enrichment method substantially decreased the human metagenomic sequencing read-depth. Long-read 16S-ITS-23S rRNA gene sequencing biased the mock community composition but provided consistent results for milk samples, with little contamination. In contrast to 16S rRNA gene sequencing, 16S-ITS-23S rRNA gene sequencing of milk, infant oral, infant faecal and maternal faecal DNA from 14 mother-infant pairs provided sufficient resolution to detect significantly more frequent sharing of bacteria between related pairs compared to unrelated pairs. In conclusion, PS or MX kit-DNA isolation followed by 16S rRNA gene sequencing reliably characterises human milk microbiota, and 16S-ITS-23S rRNA gene sequencing enables studies of bacterial transmission in low-biomass samples.
Collapse
Grants
- This study was supported by funds from the Dutch Research Council (NWO-VIDI grant 016.178.056 to A.Z., NWO-VICI grant VI.C.202.022 to J.F., NWO gravitation grant Exposome-NL 024.004.017 to A.K. and A.Z., NWO gravitation grant Netherlands Organ-on-Chip Initiative 024.003.001 to J.F.), the Dutch Heart Foundation (IN-CONTROL CVON2018-27 to J.F.), the European Research Council (ERC starting grant 715772 to A.Z., ERC consolidator grant 101001678 to J.F.), an EASI-Genomics grant (PID7780 to T.S. and A.Z.), the De-Cock Hadders foundation (2021-57 to J.E.S., 2021-08 to S.G.), the International Society for Research in Human Milk and Lactation (ISRHML, personal grant to J.E.S), the Winston Bakker Fonds (WB-08, granted to T.S.), and the European Union’s Horizon 2020 research innovation program (824110). S.G. and T.S. hold scholarships from the Graduate School of Medical Sciences and the Junior Scientific Masterclass of the University of Groningen, the Netherlands, respectively. The Lifelines NEXT cohort study received funds from the University Medical Center Groningen Hereditary Metabolic Diseases Fund, Health~Holland (Top Sector Life Sciences and Health), the Ubbo Emmius Foundation, the European Union, the Northern Netherlands Alliance (SNN), the provinces of Friesland and Groningen, the municipality of Groningen, Philips, and the Société des Produits Nestlé.
- De-Cock Hadders foundation (2021-57) International Society of Research in Human Milk and Lactation (ISRHML personal grant)
- Dutch Research Council (NWO gravitation grant Exposome-NL 024.004.017)
- De-Cock Hadders foundation (2021-08) University of Groningen Graduate School of Medical Sciences (scholarship)
- EASI-Genomics (grant PID7780) Winston Bakker Fonds (WB-08) University of Groningen Junior Scientific Masterclass (scholarship)
- Dutch Research Council (NWO-VICI grant VI.C.202.022) Dutch Research Council (NWO gravitation grant Netherlands Organ-on-Chip Initiative 024.003.001) European Research Council (ERC consolidator grant 101001678)
Collapse
Affiliation(s)
- Johanne E Spreckels
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Asier Fernández-Pato
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Marloes Kruk
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Sanzhima Garmaeva
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Trishla Sinha
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Hiren Ghosh
- Medical Center - University of Freiburg, Institute for Infection Prevention and Hospital Epidemiology, Freiburg, Germany
| | - Hermie Harmsen
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
4
|
Alemán-Duarte MI, Aguilar-Uscanga BR, García-Robles G, Ramírez-Salazar FDJ, Benítez-García I, Balcázar-López E, Solís-Pacheco JR. Improvement and Validation of a Genomic DNA Extraction Method for Human Breastmilk. Methods Protoc 2023; 6:mps6020034. [PMID: 37104016 PMCID: PMC10144544 DOI: 10.3390/mps6020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
The human milk microbiota (HMM) of healthy women can vary substantially, as demonstrated by recent advances in DNA sequencing technology. However, the method used to extract genomic DNA (gDNA) from these samples may impact the observed variations and potentially bias the microbiological reconstruction. Therefore, it is important to use a DNA extraction method that is able to effectively isolate gDNA from a diverse range of microorganisms. In this study, we improved and compared a DNA extraction method for gDNA isolation from human milk (HM) samples to commercial and standard protocols. We evaluated the extracted gDNA using spectrophotometric measurements, gel electrophoresis, and PCR amplifications to assess its quantity, quality, and amplifiability. Additionally, we tested the improved method’s ability to isolate amplifiable gDNA from fungi, Gram-positive and Gram-negative bacteria to validate its potential for reconstructing microbiological profiles. The improved DNA extraction method resulted in a higher quality and quantity of the extracted gDNA compared to the commercial and standard protocols and allowed for polymerase chain reaction (PCR) amplification of the V3–V4 regions of the 16S ribosomal gene in all the samples and the ITS-1 region of the fungal 18S ribosomal gene in 95% of the samples. These results suggest that the improved DNA extraction method demonstrates better performance for gDNA extraction from complex samples such as HM.
Collapse
Affiliation(s)
- Mario Iván Alemán-Duarte
- Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd, Gral, Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Mexico
| | - Blanca Rosa Aguilar-Uscanga
- Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd, Gral, Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Mexico
| | - Guadalupe García-Robles
- Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd, Gral, Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Mexico
| | - Felipe de Jesús Ramírez-Salazar
- Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd, Gral, Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Mexico
| | - Israel Benítez-García
- Unidad Académica de Ingeniería en Biotecnología, Universidad Politécnica de Sinaloa (UPSIN), Carretera Municipal Libre Mazatlán Higueras Km 3 Col. Genaro Estrada, Mazatlán 82199, Mexico
| | - Edgar Balcázar-López
- Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd, Gral, Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Mexico
- Correspondence: (E.B.-L.); (J.R.S.-P.); Tel.: +52-(33)-1378-59000 (ext. 27648) (J.R.S.-P.)
| | - Josué Raymundo Solís-Pacheco
- Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd, Gral, Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Mexico
- Correspondence: (E.B.-L.); (J.R.S.-P.); Tel.: +52-(33)-1378-59000 (ext. 27648) (J.R.S.-P.)
| |
Collapse
|
5
|
Ahmadi A, Khezri A, Nørstebø H, Ahmad R. A culture-, amplification-independent, and rapid method for identification of pathogens and antibiotic resistance profile in bovine mastitis milk. Front Microbiol 2023; 13:1104701. [PMID: 36687564 PMCID: PMC9852903 DOI: 10.3389/fmicb.2022.1104701] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Rapid and accurate diagnosis of causative pathogens in mastitis would minimize the imprudent use of antibiotics and, therefore, reduce the spread of antimicrobial resistance. Whole genome sequencing offers a unique opportunity to study the microbial community and antimicrobial resistance (AMR) in mastitis. However, the complexity of milk samples and the presence of a high amount of host DNA in milk from infected udders often make this very challenging. Methods Here, we tested 24 bovine milk samples (18 mastitis and six non-mastitis) using four different commercial kits (Qiagens' DNeasy® PowerFood® Microbial, Norgens' Milk Bacterial DNA Isolation, and Molzyms' MolYsis™ Plus and Complete5) in combination with filtration, low-speed centrifugation, nuclease, and 10% bile extract of male bovine (Ox bile). Isolated DNA was quantified, checked for the presence/absence of host and pathogen using PCR and sequenced using MinION nanopore sequencing. Bioinformatics analysis was performed for taxonomic classification and antimicrobial resistance gene detection. Results The results showed that kits designed explicitly for bacterial DNA isolation from food and dairy matrices could not deplete/minimize host DNA. Following using MolYsis™ Complete 5 + 10% Ox bile + micrococcal nuclease combination, on average, 17% and 66.5% of reads were classified as bovine and Staphylococcus aureus reads, respectively. This combination also effectively enriched other mastitis pathogens, including Escherichia coli and Streptococcus dysgalactiae. Furthermore, using this approach, we identified important AMR genes such as Tet (A), Tet (38), fosB-Saur, and blaZ. We showed that even 40 min of the MinION run was enough for bacterial identification and detecting the first AMR gene. Conclusion We implemented an effective method (sensitivity of 100% and specificity of 92.3%) for host DNA removal and bacterial DNA enrichment (both gram-negative and positive) directly from bovine mastitis milk. To the best of our knowledge, this is the first culture- and amplification-independent study using nanopore-based metagenomic sequencing for real-time detection of the pathogen (within 5 hours) and the AMR profile (within 5-9 hours), in mastitis milk samples. These results provide a promising and potential future on-farm adaptable approach for better clinical management of mastitis.
Collapse
Affiliation(s)
- Asal Ahmadi
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway,Institute of Clinical Medicine, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway,*Correspondence: Rafi Ahmad,
| |
Collapse
|
6
|
Yang R, Chen D, Wang H, Xu X. Experiences of mothers of NICU preterm infants in milk management out of the hospital: a qualitative study. Int Breastfeed J 2022; 17:95. [PMID: 36587203 PMCID: PMC9805215 DOI: 10.1186/s13006-022-00540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/21/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Human milk is important for the health and development of preterm infants. China's neonatal intensive care units (NICUs) have adopted the management system of maternal-infant separation. Human milk received and used by NICUs is managed by the infants' families in the out-of-hospital environment. There is scant publication on mothers' opinions on out-of-hospital human milk management. This study aimed to explore the experiences of Chinese mothers providing their infants in the NICUs with human milk expressed outside of the hospital. METHODS Semi-structured interviews were conducted with 23 participants recruited from June 2020 to November 2020, who transported their human milk to the human milk bank of Women's Hospital School of Medicine Zhejiang University during the hospitalization of their preterm infants. This study adopted a qualitative research approach with thematic analysis. RESULTS Three main themes were identified: 1) awareness of human milk management and a willingness to adopt it; 2) lack of standardization regarding expressing, storing, and transporting expressed human milk; and 3) the need for more external support. Theme 2 additionally has three sub-themes: I) differentiation of preparations before human milk expression; II) differentiation of devices for human milk expression; and III) insufficient knowledge and understanding. CONCLUSIONS In this study, all participants who received health education showed enthusiasm for participating in out-of-hospital human milk management. However, most participants had questions during the implementation process. Medical staff should provide professional and continuous external support to support mothers in implementing human milk management.
Collapse
Affiliation(s)
- Rui Yang
- School of Nursing, Capital Medical University, Beijing, China
| | - Danqi Chen
- Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Hua Wang
- Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Xinfen Xu
- Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China.
- Haining Maternal and Child Health Hospital, Branch of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Edwards CA, Van Loo-Bouwman CA, Van Diepen JA, Schoemaker MH, Ozanne SE, Venema K, Stanton C, Marinello V, Rueda R, Flourakis M, Gil A, Van der Beek EM. A systematic review of breast milk microbiota composition and the evidence for transfer to and colonisation of the infant gut. Benef Microbes 2022; 13:365-382. [PMID: 36377578 DOI: 10.3920/bm2021.0098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The intestinal microbiota plays a major role in infant health and development. However, the role of the breastmilk microbiota in infant gut colonisation remains unclear. A systematic review was performed to evaluate the composition of the breastmilk microbiota and evidence for transfer to/colonisation of the infant gut. Searches were performed using PUBMED, OVID, LILACS and PROQUEST from inception until 18th March 2020 with a PUBMED update to December 2021. 88 full texts were evaluated before final critique based on study power, sample contamination avoidance, storage, purification process, DNA extraction/analysis, and consideration of maternal health and other potential confounders. Risk of skin contamination was reduced mainly by breast cleaning and rejecting the first milk drops. Sample storage, DNA extraction and bioinformatics varied. Several studies stored samples under conditions that may selectively impact bacterial DNA preservation, others used preculture reducing reliability. Only 15 studies, with acceptable sample size, handling, extraction, and bacterial analysis, considered transfer of bacteria to the infant. Three reported bacterial transfer from infant to breastmilk. Despite consistent evidence for the breastmilk microbiota, and recent studies using improved methods to investigate factors affecting its composition, few studies adequately considered transfer to the infant gut providing very little evidence for effective impact on gut colonisation.
Collapse
Affiliation(s)
- C A Edwards
- Human Nutrition, School of Medicine, Dentistry, and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, 84 Castle St, Glasgow G4 0SF, United Kingdom
| | - C A Van Loo-Bouwman
- Yili Innovation Center Europe, Bronland 12 E-1, 6708 WH Wageningen, the Netherlands
| | - J A Van Diepen
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Middenkampweg 2, 6545 CJ Nijmegen, the Netherlands
| | - M H Schoemaker
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Middenkampweg 2, 6545 CJ Nijmegen, the Netherlands
| | - S E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, P.O. Box 289, Cambridge CB2 0QQ, United Kingdom
| | - K Venema
- Department of Human Biology, Centre for Healthy Eating & Food Innovation, Maastricht University - Campus Venlo, P.O. Box 8, 5900 AA Venlo, the Netherlands
| | - C Stanton
- Teagasc Moorepark Food Research Centre, and APC Microbiome Ireland, Cork, Ireland
| | - V Marinello
- Human Nutrition, School of Medicine, Dentistry, and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, 84 Castle St, Glasgow G4 0SF, United Kingdom
| | - R Rueda
- R&D Department, Abbott Nutrition, Cam. de Purchil, 68, 18004 Granada, Spain
| | - M Flourakis
- ILSI Europe a.i.s.b.l., E. Mounierlaan 83, 1200 Brussels, Belgium; correspondence has been taken over by C.-Y. Chang of ILSI Europe
| | - A Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Institute of Nutrition and Food Technology 'José Mataix,' Biomedical Research Centre, University of Granada, and Instituto de Investigación Biosanitaria ibs Granada, Avda. del Conocimiento s/n, 18100, Armilla, Grenada, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - E M Van der Beek
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, Postbus 30.001, 9700 RB Groningen, the Netherlands
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
8
|
Lopez Leyva L, Gonzalez E, Solomons NW, Koski KG. Human milk microbiome is shaped by breastfeeding practices. Front Microbiol 2022; 13:885588. [PMID: 36160202 PMCID: PMC9493375 DOI: 10.3389/fmicb.2022.885588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
There is evidence that breastfeeding practices may impact the milk microbiota diversity and differential abundance at the genera level; however, the possibility that distinct feeding practices, such as exclusive (EBF) and non-exclusive breastfeeding (non-EBF), might alter the milk microbiome at the species level has not been explored. This cross-sectional study analyzed the milk microbiome of 64 Mam-Mayan indigenous mothers from San Juan Ostuncalco in Guatemala. Two breastfeeding practices [exclusive (EBF) vs non-exclusive (non-EBF)] were analyzed at two stages of lactation [early (5–46 days post-partum) vs late (109–184 days post-partum)]. EBF was defined as offering only human milk and non-EBF was defined as feeding the infant herbal teas (agüitas) and/or complementary foods while continuing to breastfeed. Results identified four clusters with distinct microbial communities that segregated bacterial species by both breastfeeding practices and stage of lactation. Comparison among these clusters identified several notable patterns. First, during EBF, the microbiome differed by stage of lactation where there was a shift in differential abundance from Actinobacteria and Firmicutes in early to Bacteroidetes and Proteobacteria species in late lactation. Second, a similar comparison between non-EBF mothers by stage of lactation also identified a higher differential abundance of Actinobacteria and Firmicutes species in early lactation, but only Proteobacteria and not Bacteroidetes in late lactation, indicating a further shift in the milk microbial ecosystem with fewer oral bacteria present in late lactation. Third, comparisons between EBF and non-EBF mothers at both early and late lactation showed that mothers who exclusively breastfed had more differentially abundant species in early (11 vs 1) and late (13 vs 2) lactation. Fourth, EBF at early and late lactation had more commensal and lactic acid bacteria, including Lactobacillus gasseri, Granulicatella elegans, Streptococcus mitis, and Streptococcus parasanguinis, compared to those who did not exclusively breastfeed. Collectively, these results show that EBF has more differentially abundant bacteria, including commensal and lactic acid bacteria, and that the addition of agüitas (herbal teas) and/or complementary foods modify the milk microbiome composition by reducing the oral bacteria and introducing more environmentally sourced bacteria to the ecosystem.
Collapse
Affiliation(s)
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics (C3G), Department of Human Genetics, McGill University, Montréal, QC, Canada
- Microbiome Research Platform, McGill Interdisciplinary Initiative in Infection and Immunity (MI4), Genome Centre, McGill University, Montreal, QC, Canada
| | - Noel W. Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Kristine G. Koski
- School of Human Nutrition, McGill University, Montreal, QC, Canada
- *Correspondence: Kristine G. Koski,
| |
Collapse
|
9
|
Rahmeh R, Akbar A, Alomirah H, Kishk M, Al-Ateeqi A, Al-Milhm S, Shajan A, Akbar B, Al-Merri S, Alotaibi M, Esposito A. Camel milk microbiota: A culture-independent assessment. Food Res Int 2022; 159:111629. [DOI: 10.1016/j.foodres.2022.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
|
10
|
Comparison of the Effectiveness of Four Commercial DNA Extraction Kits on Fresh and Frozen Human Milk Samples. Methods Protoc 2022; 5:mps5040063. [PMID: 35893589 PMCID: PMC9326650 DOI: 10.3390/mps5040063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
For-profit donor human milk organizations have DNA-based proprietary methodology for testing incoming milk for adulteration with other species’ milk. However, there is currently no standardized methodology for extracting DNA from human milk. Microbiome research has shown that DNA purity and quantity can vary depending on the extraction methodology and storage conditions. This study assessed the purity and quantity of DNA extracted from four commercially available DNA extraction kits—including one kit that was developed for human milk. This study was for method validation only. One donor provided a 90 mL human milk sample. The sample was aliquoted into 70 × 1 mL microcentrifuge tubes. Aliquots were randomized into one of three categories: fresh extraction, extraction after freezing, and extraction after purification and storage at room temperature. DNA was analyzed for purity and quantity using a NanoDrop Spectrophotometer. Results confirmed differences in DNA purity and quantity between extraction kits. The Plasma/Serum Circulating DNA Purification Mini Kit (Norgen Biotek, ON, Canada) provided significantly more DNA, and consistent purity as measured by 260/280 and 260/230 ratios. DNA quantity and purity were similar between fresh and frozen human milk samples. These results suggest that DNA purity and quantity is highest and most consistent when extracted from human milk using the Plasma/Serum Circulating DNA Purification Mini Kit amongst the kits tested in this study. Standardized methodology for extracting DNA from human milk is necessary for improvement of research in the field of human milk. To do this, future studies are recommended for optimization of DNA extraction from human milk using larger sample sizes and multiple donor parents.
Collapse
|
11
|
Xie W, Zhang H, Ni Y, Peng Y. Contrasting Diversity and Composition of Human Colostrum Microbiota in a Maternal Cohort With Different Ethnic Origins but Shared Physical Geography (Island Scale). Front Microbiol 2022; 13:934232. [PMID: 35903466 PMCID: PMC9315263 DOI: 10.3389/fmicb.2022.934232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022] Open
Abstract
Colostrum represents an important source for the transfer of important commensal bacteria from mother to newborn and has a strong impact on the newborn’s health after birth. However, the composition of the colostrum microbiome is highly heterogeneous due to geographic factors and ethnicity (maternal, cultural, and subsistence factors). By analyzing the colostrum 16S rRNA gene full-length sequencing dataset in 97 healthy mothers (60 from Han, 37 from Li) from the Hainan island of China, we showed that the ethnic differences of the colostrum microbiome in a maternal cohort with different ethnic origins shared physical geography. Results indicated that the richness of microbial community in colostrum of Han women was higher than that of Li women, but there was no significant difference in Shannon index and invsimpson index between the two groups. Visualization analysis based on the distance showed an obvious ethnicity-associated structural segregation of colostrum microbiota. The relative abundance of Firmicutes was higher in the microbiota of the Han group than in Li’s, while Proteobacteria was on the contrary. At the genus level, the most dominant members of the Han and Li ethnic groups were Acinetobacter and Cupriavidus, two common environmental bacteria, respectively, although skin-derived Staphylococcus and Streptococcus were still subdominant taxa. Cupriavidus lacunae was the most dominant species in the Li group, accounting for 26.10% of the total bacterial community, but only 3.43% for the Han group with the most dominant Staphylococcus petrasii (25.54%), indicating that human colostrum microbiome was more susceptible to local living environmental factors. Hence, the ethnic origin of individuals may be an important factor to consider in human milk microbiome research and its potential clinical significance during the perinatal period in ethnic-diverse societies, even within a small geographic scale.
Collapse
Affiliation(s)
- Wanying Xie
- Department of Obstetrics and Gynecology, Hainan Medical University, Haikou, China
| | - Huimin Zhang
- School of Food Science and Technology, Shihezi University, Xinjiang, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Xinjiang, China
- *Correspondence: Yongqing Ni,
| | - Yunhua Peng
- Department of Obstetrics and Gynecology, Hainan Medical University, Haikou, China
- The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Yunhua Peng,
| |
Collapse
|
12
|
LeMay-Nedjelski L, Yonemitsu C, Asbury MR, Butcher J, Ley SH, Hanley AJ, Kiss A, Unger S, Copeland JK, Wang PW, Stintzi A, Bode L, O'Connor DL. Oligosaccharides and Microbiota in Human Milk Are Interrelated at 3 Months Postpartum in a Cohort of Women with a High Prevalence of Gestational Impaired Glucose Tolerance. J Nutr 2021; 151:3431-3441. [PMID: 34510198 PMCID: PMC8562078 DOI: 10.1093/jn/nxab270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human milk is a rich source of human milk oligosaccharides (HMOs) and bacteria. It is unclear how these components interact within the breast microenvironment. OBJECTIVES The objectives were first, to investigate the association between maternal characteristics and HMOs, and second, to assess the association between HMOs and microbial community composition and predicted function in milk from women with high rates of gestational glucose intolerance. METHODS This was an exploratory analysis of a previously completed prospective cohort study (NCT01405547) where milk samples (n = 107) were collected at 3 mo postpartum. Milk microbiota composition was analyzed by V4-16S ribosomal RNA gene sequencing and HMOs by rapid high-throughput HPLC. Data were stratified and analyzed by maternal secretor status phenotype and associations between HMOs and microbiota were determined using linear regression models (ɑ-diversity), Adonis (B-diversity), Poisson regression models (differential abundance), and general linear models (predicted microbial function). RESULTS Prepregnancy BMI, race, and frequency of direct breastfeeding, but not gestational glucose intolerance, were found to be significantly associated with a number of HMOs among secretors and non-secretors. Fucosyllacto-N-hexaose was negatively associated with microbial richness (Chao1) among secretors [B-estimate (SE): -9.3 × 102 (3.4 × 102); P = 0.0082] and difucosyllacto-N-hexaose was negatively associated with microbiota diversity (Shannon index) [-1.7 (0.78); P = 0.029] among secretors. Lacto-N-neotetraose (LNnT) was associated with both microbial B-diversity (weighted UniFrac R2 = 0.040, P = 0.036) and KEGG ortholog B-diversity (Bray-Curtis R2 = 0.039, P = 0.043) in secretors. Additionally, difucosyllactose in secretors and disialyllacto-N-hexaose and LNnT in non-secretors were associated with enrichment of predicted microbial genes encoding for metabolism- and infection-related pathways (P-false discovery rate < 0.1). CONCLUSIONS HMOs are associated with the microbial composition and predicted microbial functions in human milk at 3 mo postpartum. Further research is needed to investigate the role these relations play in maternal and infant health.
Collapse
Affiliation(s)
- Lauren LeMay-Nedjelski
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chloe Yonemitsu
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA, USA
| | - Michelle R Asbury
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sylvia H Ley
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Anthony J Hanley
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Alex Kiss
- Department of Research Design and Biostatistics, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Sharon Unger
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Sinai Health, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Julia K Copeland
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario, Canada
| | - Pauline W Wang
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA, USA
| | - Deborah L O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|