1
|
Ramudingana P, Makhado N, Kamutando CN, Thantsha MS, Mamphogoro TP. Fungal Biocontrol Agents in the Management of Postharvest Losses of Fresh Produce-A Comprehensive Review. J Fungi (Basel) 2025; 11:82. [PMID: 39852501 PMCID: PMC11766600 DOI: 10.3390/jof11010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Postharvest decay of vegetables and fruits presents a significant threat confronting sustainable food production worldwide, and in the recent times, applying synthetic fungicides has become the most popular technique of managing postharvest losses. However, there are concerns and reported proofs of hazardous impacts on consumers' health and the environment, traceable to the application of chemical treatments as preservatives on fresh produce. Physical methods, on the other hand, cause damage to fresh produce, exposing it to even more infections. Therefore, healthier and more environmentally friendly alternatives to existing methods for managing postharvest decays of fresh produce should be advocated. There is increasing consensus that utilization of biological control agents (BCAs), mainly fungi, represents a more sustainable and effective strategy for controlling postharvest losses compared to physical and chemical treatments. Secretion of antifungal compounds, parasitism, as well as competition for nutrients and space are the most common antagonistic mechanisms employed by these BCAs. This article provides an overview of (i) the methods currently used for management of postharvest diseases of fresh produce, highlighting their limitations, and (ii) the use of biocontrol agents as an alternative strategy for control of such diseases, with emphasis on fungal antagonists, their mode of action, and, more importantly, their advantages when compared to other methods commonly used. We therefore hypothesize that the use of fungal antagonists for prevention of postharvest loss of fresh produce is more effective compared to physical and chemical methods. Finally, particular attention is given to the gaps observed in establishing beneficial microbes as BCAs and factors that hamper their development, particularly in terms of shelf life, efficacy, commercialization, and legislation procedures.
Collapse
Affiliation(s)
- Phathutshedzo Ramudingana
- Gastro-Intestinal Microbiology and Biotechnology Unit, Agricultural Research Council-Animal Production, Private Bag X02, Irene, Pretoria 0062, South Africa;
- Department of Microbiological Pathology, Tuberculosis Research Unit, Sefako Makgatho Health Sciences University, Molotlegi Road, Ga-Rankuwa, Pretoria 0204, South Africa;
| | - Ndivhuho Makhado
- Department of Microbiological Pathology, Tuberculosis Research Unit, Sefako Makgatho Health Sciences University, Molotlegi Road, Ga-Rankuwa, Pretoria 0204, South Africa;
- National Health Laboratory Services, Dr George Mukhari Tertiary Laboratory, Pretoria 0204, South Africa
| | - Casper Nyaradzai Kamutando
- Department of Plant Production Sciences and Technologies, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare 0263, Zimbabwe;
| | - Mapitsi Silvester Thantsha
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
| | - Tshifhiwa Paris Mamphogoro
- Gastro-Intestinal Microbiology and Biotechnology Unit, Agricultural Research Council-Animal Production, Private Bag X02, Irene, Pretoria 0062, South Africa;
| |
Collapse
|
2
|
Dahal S, Alvarez S, Balboa SJ, Hicks LM, Rojas CM. Defining the Secondary Metabolites in the Pseudomonas protegens PBL3 Secretome with Antagonistic Activity Against Burkholderia glumae. PHYTOPATHOLOGY 2024; 114:2481-2490. [PMID: 39235863 DOI: 10.1094/phyto-04-24-0140-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Rice production worldwide is threatened by the disease bacterial panicle blight (BPB) caused by Burkholderia glumae. Despite the threat, resources to control this disease, such as completely resistant cultivars or effective chemical methods, are still lacking. However, the need to control this disease has paved the way to explore biologically based approaches harnessing the antimicrobial activities of environmental bacteria. Previously, the bacterium Pseudomonas protegens PBL3 was identified as a potential biological control agent against B. glumae due to its antimicrobial activity against B. glumae. Such antimicrobial activity in vitro and in planta was associated with the P. protegens PBL3 bacteria-free secreted fraction (secretome), although the specific molecules responsible for this activity have remained elusive. In this work, we advance the characterization of the P. protegens PBL3 secretome by evaluating the antimicrobial activity in vitro of selected secondary metabolites predicted by the P. protegens PBL3 genomic sequence against B. glumae. In addition, using reversed-phase liquid chromatography tandem mass spectrometry of the P. protegens PBL3 secretome enabled us to successfully detect and quantify pyoluteorin, 2,4-diacetylphloroglucinol, and pyochelin. Among those, pyoluteorin and 2,4-diacetylphloroglucinol reduced the growth of B. glumae in vitro, along with reducing the symptoms of BPB and bacterial growth in planta, suggesting that these compounds could be effective as biopesticides to mitigate BPB.
Collapse
Affiliation(s)
- Shilu Dahal
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722, U.S.A
| | - Sophie Alvarez
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588-06653, U.S.A
| | - Samantha J Balboa
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, U.S.A
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, U.S.A
| | - Clemencia M Rojas
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722, U.S.A
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-06653, U.S.A
| |
Collapse
|
3
|
Alattas H, Glick BR, Murphy DV, Scott C. Harnessing Pseudomonas spp. for sustainable plant crop protection. Front Microbiol 2024; 15:1485197. [PMID: 39640850 PMCID: PMC11617545 DOI: 10.3389/fmicb.2024.1485197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
This review examines the role of Pseudomonas spp. bacteria as biocontrol agents against crop diseases, focusing on their mechanisms of action, efficacy, and potential applications in sustainable agriculture. Pseudomonas spp., ubiquitous in soil ecosystems and root microbiomes, have attracted attention for their ability to suppress phytopathogens and enhance plant health through various mechanisms. These include direct competition for nutrients, production of antimicrobial compounds and volatile organic compounds, competition using type VI secretion systems, and indirect induction of systemic resistance. Our review shows that Pseudomonas strains effectively control a wide range of diseases across diverse plant species, with some strains demonstrating efficacy comparable to chemical fungicides. However, the review also highlights challenges in achieving consistent performance when using Pseudomonas inoculants under field conditions due to various biotic and abiotic factors. Strategies to optimize biocontrol potential, such as formulation techniques, application methods, and integration with other management practices, are discussed. The advantages of Pseudomonas-based biocontrol for sustainable agriculture include reduced reliance on chemical pesticides, enhanced crop productivity, and improved environmental sustainability. Future research directions should focus on understanding the complex interactions within the plant microbiome, optimizing delivery systems, and addressing regulatory hurdles for commercial deployment. This review underscores the significant potential of Pseudomonas spp. in sustainable crop protection while acknowledging the need for further research to fully harness their capabilities in agricultural systems.
Collapse
Affiliation(s)
- Hussain Alattas
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- School of Medical, Molecular, and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Daniel V. Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Colin Scott
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
4
|
He D, Gao C, Zhao S, Chen H, Li P, Yang X, Li D, Zhao T, Jiang H, Liu C. Antibacterial, Herbicidal, and Plant Growth-Promoting Properties of Streptomyces sp. STD57 from the Rhizosphere of Adenophora stricta. Microorganisms 2024; 12:2245. [PMID: 39597634 PMCID: PMC11596161 DOI: 10.3390/microorganisms12112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Bacterial wilt triggered by the soil-borne pathogenic bacterium Ralstonia solanacearum is one of the most serious diseases in tomato plants, leading to huge economic losses worldwide. Biological control is considered an environmentally friendly and sustainable way to manage soil-borne diseases. In this study, Streptomyces sp. STD57 isolated from the rhizosphere of Adenophora stricta showed strong antibacterial activity against R. solanacearum. Pot experiments showed that strain STD57 exhibited a significant biocontrol effect (81.7%) on tomato bacterial wilt in the greenhouse environment. Furthermore, strain STD57 could inhibit the growth of weeds (Amaranthus retroflexus, Portulaca oleracea, and Echinochloa crusgalli) but promote the growth of crops (wheat, rice, and tomato). The plant growth-promoting substance was identified as indoleacetic acid (IAA) by high-pressure liquid chromatography-mass spectrometry and genome analysis. Coarse separation of the fermented extracts revealed that the antibacterial and herbicidal substances were mainly in the fermentation supernatant and belonged to different products. These findings suggested that strain STD57 may be a potential biocontrol and bioherbicide agent useful in agriculture.
Collapse
Affiliation(s)
- Dan He
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Congting Gao
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.G.); (H.C.)
| | - Shen Zhao
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Hongmin Chen
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.G.); (H.C.)
| | - Peng Li
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Xishan Yang
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Deping Li
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Tingting Zhao
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Hong Jiang
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Chongxi Liu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.G.); (H.C.)
| |
Collapse
|
5
|
Barazetti AR, Dealis ML, Basso KR, Silva MCD, Alves LDC, Parra MEA, Simionato AS, Cely MVT, Macedo AL, Silva DB, Andrade G. Evaluation of Resistance Induction Promoted by Bioactive Compounds of Pseudomonas aeruginosa LV Strain against Asian Soybean Rust. Microorganisms 2024; 12:1576. [PMID: 39203418 PMCID: PMC11355946 DOI: 10.3390/microorganisms12081576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 09/03/2024] Open
Abstract
Pseudomonas are known as higher producers of secondary metabolites with antimicrobial properties and plant growth promoters, including resistance induction. These mechanisms should be an alternative to pesticide use in crop production. Phakopsora pachyrhizi causes Asian soybean rust, representing a high loss of yield around the world. The objective of this paper was to evaluate the application of secondary metabolites produced by Pseudomonas aeruginosa LV strain from the semi-purified fraction F4A in soybean plants to induce plant resistance against P. pachyrhizi in field conditions. The experimental design was performed in randomized blocks with three replicates using two F4A doses (1 and 10 μg mL-1) combined or not with fungicides (Unizeb Gold® or Sphere Max®). The control treatment, with Uni + Sph, saponins, flavonoids, and sphingolipids, showed higher intensities in the plants. In contrast, plants treated with the F4A fraction mainly exhibited fatty acid derivatives and some non-identified compounds with nitrogen. Plants treated with Sphere Max®, with or without F4A10, showed higher intensities of glycosylated flavonoids, such as kaempferol, luteolin, narigenin, and apigenin. Plants treated with F4A showed higher intensities of genistein and fatty acid derivatives. These increases in flavonoid compound biosynthesis and antioxidant properties probably contribute to the protection against reactive oxygen species (ROS).
Collapse
Affiliation(s)
- André Riedi Barazetti
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Mickely Liuti Dealis
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Kawany Roque Basso
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Maria Clara Davis Silva
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Leonardo da Cruz Alves
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Maria Eugênia Alcântara Parra
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Ane Stéfano Simionato
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Martha Viviana Torres Cely
- Agricultural and Environmental Sciences Institute, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil;
| | - Arthur Ladeira Macedo
- Natural Products and Mass Spectrometry Laboratory (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (A.L.M.); (D.B.S.)
| | - Denise Brentan Silva
- Natural Products and Mass Spectrometry Laboratory (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (A.L.M.); (D.B.S.)
| | - Galdino Andrade
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| |
Collapse
|
6
|
Shi H, Jiang J, Yu W, Cheng Y, Wu S, Zong H, Wang X, Ding A, Wang W, Sun Y. Naringenin restricts the colonization and growth of Ralstonia solanacearum in tobacco mutant KCB-1. PLANT PHYSIOLOGY 2024; 195:1818-1834. [PMID: 38573326 PMCID: PMC11213252 DOI: 10.1093/plphys/kiae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
Bacterial wilt severely jeopardizes plant growth and causes enormous economic loss in the production of many crops, including tobacco (Nicotiana tabacum). Here, we first demonstrated that the roots of bacterial wilt-resistant tobacco mutant KCB-1 can limit the growth and reproduction of Ralstonia solanacearum. Secondly, we demonstrated that KCB-1 specifically induced an upregulation of naringenin content in root metabolites and root secretions. Further experiments showed that naringenin can disrupt the structure of R. solanacearum, inhibit the growth and reproduction of R. solanacearum, and exert a controlling effect on bacterial wilt. Exogenous naringenin application activated the resistance response in tobacco by inducing the burst of reactive oxygen species and salicylic acid deposition, leading to transcriptional reprogramming in tobacco roots. Additionally, both external application of naringenin in CB-1 and overexpression of the Nicotiana tabacum chalcone isomerase (NtCHI) gene, which regulates naringenin biosynthesis, in CB-1 resulted in a higher complexity of their inter-root bacterial communities than in untreated CB-1. Further analysis showed that naringenin could be used as a marker for resistant tobacco. The present study provides a reference for analyzing the resistance mechanism of bacterial wilt-resistant tobacco and controlling tobacco bacterial wilt.
Collapse
Affiliation(s)
- Haoqi Shi
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiale Jiang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Yu
- Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
| | - Yazhi Cheng
- Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
| | - Shengxin Wu
- Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
| | - Hao Zong
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, China
| | - Xiaoqiang Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Anming Ding
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Weifeng Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yuhe Sun
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
7
|
Hansen ML, Dénes Z, Jarmusch SA, Wibowo M, Lozano-Andrade CN, Kovács ÁT, Strube ML, Andersen AJC, Jelsbak L. Resistance towards and biotransformation of a Pseudomonas-produced secondary metabolite during community invasion. THE ISME JOURNAL 2024; 18:wrae105. [PMID: 38874164 PMCID: PMC11203913 DOI: 10.1093/ismejo/wrae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The role of antagonistic secondary metabolites produced by Pseudomonas protegens in suppression of soil-borne phytopathogens has been clearly documented. However, their contribution to the ability of P. protegens to establish in soil and rhizosphere microbiomes remains less clear. Here, we use a four-species synthetic community (SynCom) in which individual members are sensitive towards key P. protegens antimicrobial metabolites (DAPG, pyoluteorin, and orfamide A) to determine how antibiotic production contributes to P. protegens community invasion and to identify community traits that counteract the antimicrobial effects. We show that P. protegens readily invades and alters the SynCom composition over time, and that P. protegens establishment requires production of DAPG and pyoluteorin. An orfamide A-deficient mutant of P. protegens invades the community as efficiently as wildtype, and both cause similar perturbations to community composition. Here, we identify the microbial interactions underlying the absence of an orfamide A mediated impact on the otherwise antibiotic-sensitive SynCom member, and show that the cyclic lipopeptide is inactivated and degraded by the combined action of Rhodococcus globerulus D757 and Stenotrophomonas indicatrix D763. Altogether, the demonstration that the synthetic community constrains P. protegens invasion by detoxifying its antibiotics may provide a mechanistic explanation to inconsistencies in biocontrol effectiveness in situ.
Collapse
Affiliation(s)
- Morten L Hansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Zsófia Dénes
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Scott A Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Carlos N Lozano-Andrade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Ákos T Kovács
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Mikael L Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Aaron J C Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
8
|
Andargie YE, Lee G, Jeong M, Tagele SB, Shin JH. Deciphering key factors in pathogen-suppressive microbiome assembly in the rhizosphere. FRONTIERS IN PLANT SCIENCE 2023; 14:1301698. [PMID: 38116158 PMCID: PMC10728675 DOI: 10.3389/fpls.2023.1301698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
In a plant-microbe symbiosis, the host plant plays a key role in promoting the association of beneficial microbes and maintaining microbiome homeostasis through microbe-associated molecular patterns (MAMPs). The associated microbes provide an additional layer of protection for plant immunity and help in nutrient acquisition. Despite identical MAMPs in pathogens and commensals, the plant distinguishes between them and promotes the enrichment of beneficial ones while defending against the pathogens. The rhizosphere is a narrow zone of soil surrounding living plant roots. Hence, various biotic and abiotic factors are involved in shaping the rhizosphere microbiome responsible for pathogen suppression. Efforts have been devoted to modifying the composition and structure of the rhizosphere microbiome. Nevertheless, systemic manipulation of the rhizosphere microbiome has been challenging, and predicting the resultant microbiome structure after an introduced change is difficult. This is due to the involvement of various factors that determine microbiome assembly and result in an increased complexity of microbial networks. Thus, a comprehensive analysis of critical factors that influence microbiome assembly in the rhizosphere will enable scientists to design intervention techniques to reshape the rhizosphere microbiome structure and functions systematically. In this review, we give highlights on fundamental concepts in soil suppressiveness and concisely explore studies on how plants monitor microbiome assembly and homeostasis. We then emphasize key factors that govern pathogen-suppressive microbiome assembly. We discuss how pathogen infection enhances plant immunity by employing a cry-for-help strategy and examine how domestication wipes out defensive genes in plants experiencing domestication syndrome. Additionally, we provide insights into how nutrient availability and pH determine pathogen suppression in the rhizosphere. We finally highlight up-to-date endeavors in rhizosphere microbiome manipulation to gain valuable insights into potential strategies by which microbiome structure could be reshaped to promote pathogen-suppressive soil development.
Collapse
Affiliation(s)
- Yohannes Ebabuye Andargie
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Plant Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Setu Bazie Tagele
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
- Next Generation Sequencing (NGS) Core Facility, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
9
|
Kareem HA, Hao X, Shen X. Collaborative impact of bacterial exometabolites governing root microbiota formation. STRESS BIOLOGY 2023; 3:38. [PMID: 37676462 PMCID: PMC10484853 DOI: 10.1007/s44154-023-00121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
The majority of the root microbiota formation derives from soil-dwelling microorganisms. The limited extent of thorough investigation leads to a dearth of knowledge concerning the intricate mechanisms of microbe-microbe interaction implicated in the establishment of root microbiota. Therefore, the taxonomic signatures in bacterial inhibition profiles were determined by in vitro testing of 39,204 binary interbacterial interactions. However, findings from genetic and metabolomic studies elucidated that co-functioning of the antimicrobial 2,4-d iacetylphloroglucinol (DAPG) and the iron chelator pyoverdine as exometabolites has significantly contributed to the potent inhibitory activities of the highly antagonistic Pseudomonas brassicacearum R401. Microbiota restoration with a core of Arabidopsis thaliana root commensals showed that these exometabolites possess a root niche-specific function in establishing root competence and inducing anticipated changes in root surroundings. Both biosynthetic operons are abundant in roots in natural habitats, indicating that these exometabolites co-functioning is an adaptive feature that helps Pseudomonad dominate the root microbiota.
Collapse
Affiliation(s)
- Hafiz Abdul Kareem
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinwei Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
10
|
Vailleau F, Genin S. Ralstonia solanacearum: An Arsenal of Virulence Strategies and Prospects for Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:25-47. [PMID: 37506349 DOI: 10.1146/annurev-phyto-021622-104551] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The group of strains constituting the Ralstonia solanacearum species complex (RSSC) is a prominent model for the study of plant-pathogenic bacteria because of its impact on agriculture, owing to its wide host range, worldwide distribution, and long persistence in the environment. RSSC strains have led to numerous studies aimed at deciphering the molecular bases of virulence, and many biological functions and mechanisms have been described to contribute to host infection and pathogenesis. In this review, we put into perspective recent advances in our understanding of virulence in RSSC strains, both in terms of the inventory of functions that participate in this process and their evolutionary dynamics. We also present the different strategies that have been developed to combat these pathogenic strains through biological control, antimicrobial agents, plant genetics, or microbiota engineering.
Collapse
Affiliation(s)
- Fabienne Vailleau
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France; ,
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France; ,
| |
Collapse
|
11
|
Shahid I, Han J, Hanook S, Borchers CH, El Enshasy HA, Mehnaz S. Genome mining of Pseudomonas spp. hints towards the production of under-pitched secondary metabolites. 3 Biotech 2023; 13:182. [PMID: 37193329 PMCID: PMC10182215 DOI: 10.1007/s13205-023-03607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
The recent advances in omics and computational analysis have enabled the capacity to identify the exclusive strain-specific metabolites and novel biosynthetic gene clusters. This study analyzed eight strains of P. aurantiaca including GS1, GS3, GS4, GS6, GS7, FS2, ARS38, PBSt2, one strain of P. chlororaphis RP4, one strain of P. aeruginosa (At1RP4), and one strain of P. fluorescens (RS1) for the production of rhamnolipids, quorum-sensing signals, and osmolytes. Seven rhamnolipid derivatives were variably detected in fluorescent pseudomonads. These rhamnolipids included Rha-C10-C8, Rha-Rha-C10-C10, Rha-C10-C12db, Rha-C10-C10, Rha-Rha-C10-C12, Rha-C10-C12, and Rha-Rha-C10-C12db. Pseudomonas spp. also showed the variable production of osmoprotectants including N-acetyl glutaminyl glutamine amide (NAGGN), betaine, ectoine, and trehalose. Betaine and ectoine were produced by all pseudomonads, however, NAGGN and trehalose were observed by five and three strains, respectively. Four strains including P. chlororaphis (RP4), P. aeruginosa (At1RP4), P. fluorescens (RS1), and P. aurantiaca (PBSt2) were exposed to 1- 4% NaCl concentrations and evaluated for the changes in phenazine production profile which were negligible. AntiSMASH 5.0 platform showed 50 biosynthetic gene clusters in PB-St2, of which 23 (45%) were classified as putative gene clusters with ClusterFinder algorithm, five (10%) were classified as non-ribosomal peptides synthetases (NRPS), five (10%) as saccharides, and four (8%) were classified as putative fatty acids. The genomic attributes and comprehensive insights into the metabolomic profile of these Pseudomonas spp. strains showcase their phytostimulatory, phyto-protective, and osmoprotective effects of diverse crops grown in normal and saline soils. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03607-x.
Collapse
Affiliation(s)
- Izzah Shahid
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Jun Han
- University of Victoria-Genome BC Proteomics Center, University of Victoria, Victoria, BC V8Z 7X8 Canada
| | - Sharoon Hanook
- Department of Statistics, Forman Christian College (A Chartered University), Lahore, 54600 Pakistan
| | - Christoph H. Borchers
- University of Victoria-Genome BC Proteomics Center, University of Victoria, Victoria, BC V8Z 7X8 Canada
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 Skudai, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Malaysia
- City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, 21934 Egypt
| | - Samina Mehnaz
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore, 54600 Pakistan
| |
Collapse
|
12
|
Saberi Riseh R, Gholizadeh Vazvani M, Hassanisaadi M, Thakur VK, Kennedy JF. Use of whey protein as a natural polymer for the encapsulation of plant biocontrol bacteria: A review. Int J Biol Macromol 2023; 234:123708. [PMID: 36806771 DOI: 10.1016/j.ijbiomac.2023.123708] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
Climate changes, drought, the salinity of water and soil, the emergence of new breeds of pests and pathogens, the industrialization of countries, and environmental contamination are among the factors limiting the production of agricultural products. The use of chemicals (in the form of fertilizers, pesticides and fungicides) to enhance products against biotic and abiotic stresses has limitations. To eliminate the effects of agricultural chemicals, synthetic agrochemicals should be replaced with natural substances and useful microorganisms. To be more effective and efficient, plant biocontrol bacteria need a coating layer around themselves to protect them from adverse conditions. Whey protein, a valuable by-product of the cheese industry, is one of the important natural polymers. Due to its high protein content, safety, and biodegradability, whey can have many applications in agriculture and encapsulation of bacteria to resist pests and plant diseases. This compound is a rich source of amino acids that can activate plant defense systems and defense enzymes. Considering the amazing potentialities of formulation whey protein, this review attends to the efficiency of whey protein as coating layers on fruit and vegetables and in the packaging system to increase the shelf life of agricultural products against phytopathogens.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India; Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India.
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
13
|
Geller AM, Levy A. "What I cannot create, I do not understand": elucidating microbe-microbe interactions to facilitate plant microbiome engineering. Curr Opin Microbiol 2023; 72:102283. [PMID: 36868050 DOI: 10.1016/j.mib.2023.102283] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 03/05/2023]
Abstract
Plant-microbe interactions are important for both physiological and pathological processes. Despite the significance of plant-microbe interactions, microbe-microbe interactions themselves represent an important, complex, dynamic network that warrants deeper investigation. To understand how microbe-microbe interactions affect plant microbiomes, one approach is to systematically understand all the factors involved in successful engineering of a microbial community. This follows the physicist Richard Feynman's declaration: "what I cannot create, I do not understand". This review highlights recent studies that focus on aspects that we believe are important for building (ergo understanding) microbe-microbe interactions in the plant environment, including pairwise screening, intelligent application of cross-feeding models, spatial distributions of microbes, and understudied interactions between bacteria and fungi, phages, and protists. We offer a framework for systematic collection and centralized integration of data of plant microbiomes that could organize all the factors that can help ecologists understand microbiomes and help synthetic ecologists engineer beneficial microbiomes.
Collapse
Affiliation(s)
- Alexander M Geller
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Asaf Levy
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| |
Collapse
|
14
|
Vicente TFL, Félix C, Félix R, Valentão P, Lemos MFL. Seaweed as a Natural Source against Phytopathogenic Bacteria. Mar Drugs 2022; 21:23. [PMID: 36662196 PMCID: PMC9867177 DOI: 10.3390/md21010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Plant bacterial pathogens can be devastating and compromise entire crops of fruit and vegetables worldwide. The consequences of bacterial plant infections represent not only relevant economical losses, but also the reduction of food availability. Synthetic bactericides have been the most used tool to control bacterial diseases, representing an expensive investment for the producers, since cyclic applications are usually necessary, and are a potential threat to the environment. The development of greener methodologies is of paramount importance, and some options are already available in the market, usually related to genetic manipulation or plant community modulation, as in the case of biocontrol. Seaweeds are one of the richest sources of bioactive compounds, already being used in different industries such as cosmetics, food, medicine, pharmaceutical investigation, and agriculture, among others. They also arise as an eco-friendly alternative to synthetic bactericides. Several studies have already demonstrated their inhibitory activity over relevant bacterial phytopathogens, some of these compounds are known for their eliciting ability to trigger priming defense mechanisms. The present work aims to gather the available information regarding seaweed extracts/compounds with antibacterial activity and eliciting potential to control bacterial phytopathogens, highlighting the extracts from brown algae with protective properties against microbial attack.
Collapse
Affiliation(s)
- Tânia F. L. Vicente
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Carina Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Rafael Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marco F. L. Lemos
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|