1
|
Liu S, Liu B, Tan Y, Zhou H, Yang J, Ren P, Yu H, Geng C, Wang R, Yan X, Huang L. BAR11, a Ferritin Protein From Saccharothrix yanglingensis Enhances Disease Resistance in Malus domestica by Disrupting Iron Homoeostasis. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40230310 DOI: 10.1111/pce.15542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/19/2025] [Accepted: 03/30/2025] [Indexed: 04/16/2025]
Abstract
Previously, we identified BAR11, an uncharacterized protein from the biocontrol actinomycete Saccharothrix yanglingensis Hhs.015, as an elicitor of plant immunity. BAR11 pretreatment significantly suppressed Valsa mali infection in apple (Malus domestica); however, its molecular function remained unclear, as did the mechanisms governing the response of the apples to BAR11 treatment. Here, we demonstrate that BAR11 functions as a ferritin, defined by a conserved four-helical bundle structure, and enhances oxidative stress tolerance in actinomycetes. Confocal microscopy revealed that BAR11 was secreted and delivered into apple cells, where it sequestered labile ferrous iron (Fe2+) and inhibited iron uptake. Notably, BAR11 treatment and iron deficiency induced nearly identical transcriptional reprogramming of iron homoeostasis-related genes in apple roots and similar resistance phenotypes, suggesting that BAR11 triggers a low iron-mimicry state, which potentiates apple immunity. Transcriptomic analysis further supported that BAR11 disrupted the expression of iron homoeostasis-related genes while activating that of defence-related ones. Moreover, the apple WRKY family transcription factor MdWRKY40 responded robustly to BAR11 and low-iron treatments and positively modulated BAR11-induced resistance against V. mali. Our findings reveal a paradigm wherein actinomycete ferritins act as cross-kingdom immune elicitors by disrupting iron homoeostasis in apple, providing a mechanistic foundation for iron-targeted biocontrol strategies.
Collapse
Affiliation(s)
- Shang Liu
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Boya Liu
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Yuqin Tan
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Hanqi Zhou
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Jinhui Yang
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Peng Ren
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Hongjia Yu
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Chang Geng
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Ruolin Wang
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Xia Yan
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Hecel A, Kola A, Valensin D, Witkowska D. Thiol, His-His Motif, and the Battle over Cu(II) in the Relationship of CopM Metallophore and OprC Outer Membrane Protein. Inorg Chem 2025; 64:2936-2950. [PMID: 39914813 PMCID: PMC11836926 DOI: 10.1021/acs.inorgchem.4c05101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
The mechanisms of Cu import across the bacterial outer membrane have been investigated only in a few cases. One such mechanism involves the outer membrane OprC transporter with a unique CxxxM-HxM metal-binding site, discovered recently. This newly identified site in OprC is located outside the cell and is, therefore, most likely to bind Cu(II) through this domain. Since OprC may interact with azurin to facilitate the removal of copper, our study investigated the potential role of CopM metallophore. We selected two putative metal-binding sites in CopM, characterized by MxxHH and MHxxH motifs, which can bind Cu(II) and may interact with the extracellular CxxxM-HxM motif of OprC. At pH 7, the MxxHH motif in CopM was the most effective ligand for Cu(II) ions compared to the MHxxH domain and the novel CxxxM-HxM site in OprC. Furthermore, the CxxxM-HxM site in OprC, where a cysteine residue also binds Cu(II) ions alongside histidine, does not effectively compete with the MxxHH metal-binding site in CopM. This comparison suggests that the CopM MxxHH domain binds Cu(II) ions very strongly and is unable to give them back to the OprC; therefore, it is perhaps transported together with copper ions through OprC into the bacterial cell.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty
of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Arian Kola
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Daniela Valensin
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Danuta Witkowska
- Institute
of Health Sciences, University of Opole, 45-060 Opole, Poland
| |
Collapse
|
3
|
Bonaldi DS, Funnicelli MIG, Fernandes CC, Laurito HF, Pinheiro DG, Alves LMC. Genetic and biochemical determinants in potentially toxic metals resistance and plant growth promotion in Rhizobium sp LBMP-C04. World J Microbiol Biotechnol 2024; 41:7. [PMID: 39690265 DOI: 10.1007/s11274-024-04219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
The association of bacteria resistant to potentially toxic metals (PTMs) with plants to remove, transfer, or stabilize these elements from the soil is an appropriate tool for phytoremediation processes in metal-contaminated environments. The objective of this study was to evaluate the potential of Rhizobium sp. LBMP-C04 for phytoremediation processes and plant growth promotion in metal-contaminated soils. Functional annotation allowed us to predict a variety of genes related to PTMs resistance and plant growth promotion in the bacterial genome. Resistance genes are mainly associated with DNA repair, and the import or export of metals in bacterial cells to maintain cell homeostasis. Genes that promote plant growth are related to mechanisms of osmotic stress tolerance, phosphate solubilization, nitrogen metabolism, biological nitrogen fixation, biofilm formation, heat shock responses, indole-3-acetic acid (IAA) biosynthesis, tryptophan, and organic acids metabolism. Biochemical tests indicated that Rhizobium sp. LBMP-C04 can solubilize calcium phosphate and produce siderophores and IAA in vitro in the presence of the PTMs Cd2+,Cu2+,Cr3+,Cr6+, Zn2+, and Ni2+. Results indicate the possibility of using Rhizobium sp. LBMP-C04 as a potentially efficient bacterium in phytoremediation processesin environments contaminated by PTMs and simultaneously promote plant growth.
Collapse
Affiliation(s)
- Daiane Silva Bonaldi
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Michelli Inácio Gonçalves Funnicelli
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
- Department of of Agricultural and Environmental Biotechnology, Bioinformatics Laboratory, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Camila Cesário Fernandes
- Department of of Agricultural and Environmental Biotechnology, Centralized Laboratory for Large-Scale DNA Sequencing and Gene Expression Analysis, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Henrique Fontellas Laurito
- Graduate Program in Vegetable Production, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Daniel Guariz Pinheiro
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
- Department of of Agricultural and Environmental Biotechnology, Bioinformatics Laboratory, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Lucia Maria Carareto Alves
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil.
- Department of of Agricultural and Environmental Biotechnology, School of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil.
| |
Collapse
|
4
|
Olivan-Muro I, Sarasa-Buisan C, Guio J, Arenas J, Sevilla E, Fillat MF. Unbalancing Zur (FurB)-mediated homeostasis in Anabaena sp. PCC7120: Consequences on metal trafficking, heterocyst development and biofilm formation. Environ Microbiol 2023; 25:2142-2162. [PMID: 37315963 DOI: 10.1111/1462-2920.16434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
Zinc is required for the activity of many enzymes and plays an essential role in gene regulation and redox homeostasis. In Anabaena (Nostoc) sp. PCC7120, the genes involved in zinc uptake and transport are controlled by the metalloregulator Zur (FurB). Comparative transcriptomics of a zur mutant (Δzur) with the parent strain unveiled unexpected links between zinc homeostasis and other metabolic pathways. A notable increase in the transcription of numerous desiccation tolerance-related genes, including genes involved in the synthesis of trehalose and the transference of saccharide moieties, among many others, was detected. Biofilm formation analysis under static conditions revealed a reduced capacity of Δzur filaments to form biofilms compared to the parent strain, and such capacity was enhanced when Zur was overexpressed. Furthermore, microscopy analysis revealed that zur expression is required for the correct formation of the envelope polysaccharide layer in the heterocyst, as Δzur cells showed reduced staining with alcian blue compared to Anabaena sp. PCC7120. We suggest that Zur is an important regulator of the enzymes involved in the synthesis and transport of the envelope polysaccharide layer, influencing heterocyst development and biofilm formation, both relevant processes for cell division and interaction with substrates in its ecological niche.
Collapse
Affiliation(s)
- Irene Olivan-Muro
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences and Institute of Bioinformatics and Physical of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Cristina Sarasa-Buisan
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences and Institute of Bioinformatics and Physical of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Jorge Guio
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences and Institute of Bioinformatics and Physical of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Jesús Arenas
- Department of Animal Pathology, Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Emma Sevilla
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences and Institute of Bioinformatics and Physical of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Maria F Fillat
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences and Institute of Bioinformatics and Physical of Complex Systems, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
5
|
Lima S, Matinha-Cardoso J, Giner-Lamia J, Couto N, Pacheco CC, Florencio FJ, Wright PC, Tamagnini P, Oliveira P. Extracellular vesicles as an alternative copper-secretion mechanism in bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128594. [PMID: 35259694 DOI: 10.1016/j.jhazmat.2022.128594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Metal homeostasis is fundamental for optimal performance of cell metabolic pathways. Over the course of evolution, several systems emerged to warrant an intracellular metal equilibrium. When exposed to growth-challenging copper concentrations, Gram-negative bacteria quickly activate copper-detoxification mechanisms, dependent on transmembrane-protein complexes and metallochaperones that mediate metal efflux. Here, we show that vesiculation is also a common bacterial response mechanism to high copper concentrations, and that extracellular vesicles (EVs) play a role in transporting copper. We present evidence that bacteria from different ecological niches release copious amounts of EVs when exposed to copper. Along with the activation of the classical detoxification systems, we demonstrate that copper-stressed cells of the cyanobacterium Synechocystis sp. PCC6803 release EVs loaded with the copper-binding metallochaperone CopM. Under standard growth conditions, CopM-loaded EVs could also be isolated from a Synechocystis strain lacking a functional TolC-protein, which we characterize here as exhibiting a copper-sensitive phenotype. Analyses of Synechocystis tolC-mutant's EVs isolated from cells cultivated under standard conditions indicated the presence of copper therein, in significantly higher levels as compared to those from the wild-type. Altogether, these results suggest that release of EVs in bacteria represent a novel copper-secretion mechanism, shedding light into alternative mechanisms of bacterial metal resistance.
Collapse
Affiliation(s)
- Steeve Lima
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; MCbiology Doctoral Program, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Jorge Matinha-Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Joaquín Giner-Lamia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC C, Américo Vespucio, 49, 41092 Sevilla, Spain; Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Parque Científico y Tecnológico, UPM Campus de Montegancedo, Ctra, M-40, km 38, 28223 Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Campus, Av. Puerta de Hierro, nº 2, 4, 28040 Madrid, Spain
| | - Narciso Couto
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St, Sheffield City Centre, Sheffield S1 4NL, United Kingdom
| | - Catarina C Pacheco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC C, Américo Vespucio, 49, 41092 Sevilla, Spain; Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Phillip C Wright
- University of Southampton, Office of the President and Vice Chancellor B37, University Rd, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Paulo Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
6
|
You X, Li H, Pan B, You M, Sun W. Interactions between antibiotics and heavy metals determine their combined toxicity to Synechocystis sp. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127707. [PMID: 34798547 DOI: 10.1016/j.jhazmat.2021.127707] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Co-pollution of antibiotics and metals is prevailing in aquatic environments. However, risks of coexisted antibiotics and metals on aquatic organisms is unclear. This study investigated the combined toxicity of antibiotics and metals towards Synechocystis sp. PCC 6803, a cyanobacterium. We found that the joint toxicity of antibiotics and metals is dependent on their interplays. The complexation between chlortetracycline (CTC) and copper/cadmium (Cu(II)/Cd(II)) resulted in their antagonistic toxicity. Contrarily, an additive toxicity was found between florfenicol (FLO) and Cu(II)/Cd(II) due to lack of interactions between them. CTC facilitated the intracellular uptake of Cu(II) and Cd(II) by increasing the membrane permeability. However, FLO had no obvious effects on the internalization of metals in Synechocystis sp. Proteomic analysis revealed that the photosynthetic proteins was down-regulated by CTC and FLO, and ribosome was the primary target of FLO. These results were verified by parallel reaction monitoring (PRM). Cu(II) induced the up-regulation of iron-sulfur assembly, while Cd(II) disturbed the cyclic electron transport in Synechocystis sp. The co-exposure of CTC and metals markedly alleviated the dysregulation of proteins, while the co-exposure of FLO and metals down-regulated biological functions such as ATP synthesis, photosynthesis, and carbon fixation of Synechocystis sp., compared with their individuals. This supports their joint toxicity effects. Our findings provide better understanding of combined toxicity between multiple pollutants in aquatic environments.
Collapse
Affiliation(s)
- Xiuqi You
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Haibo Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Mingtao You
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
7
|
Hadley RC, Zhitnitsky D, Livnat-Levanon N, Masrati G, Vigonsky E, Rose J, Ben-Tal N, Rosenzweig AC, Lewinson O. The copper-linked Escherichia coli AZY operon: Structure, metal binding, and a possible physiological role in copper delivery. J Biol Chem 2022; 298:101445. [PMID: 34822841 PMCID: PMC8689200 DOI: 10.1016/j.jbc.2021.101445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
The Escherichia coli yobA-yebZ-yebY (AZY) operon encodes the proteins YobA, YebZ, and YebY. YobA and YebZ are homologs of the CopC periplasmic copper-binding protein and the CopD putative copper importer, respectively, whereas YebY belongs to the uncharacterized Domain of Unknown Function 2511 family. Despite numerous studies of E. coli copper homeostasis and the existence of the AZY operon in a range of bacteria, the operon's proteins and their functional roles have not been explored. In this study, we present the first biochemical and functional studies of the AZY proteins. Biochemical characterization and structural modeling indicate that YobA binds a single Cu2+ ion with high affinity. Bioinformatics analysis shows that YebY is widespread and encoded either in AZY operons or in other genetic contexts unrelated to copper homeostasis. We also determined the 1.8 Å resolution crystal structure of E. coli YebY, which closely resembles that of the lantibiotic self-resistance protein MlbQ. Two strictly conserved cysteine residues form a disulfide bond, consistent with the observed periplasmic localization of YebY. Upon treatment with reductants, YebY binds Cu+ and Cu2+ with low affinity, as demonstrated by metal-binding analysis and tryptophan fluorescence. Finally, genetic manipulations show that the AZY operon is not involved in copper tolerance or antioxidant defense. Instead, YebY and YobA are required for the activity of the copper-related NADH dehydrogenase II. These results are consistent with a potential role of the AZY operon in copper delivery to membrane proteins.
Collapse
Affiliation(s)
- Rose C Hadley
- Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Daniel Zhitnitsky
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Nurit Livnat-Levanon
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elena Vigonsky
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Jessica Rose
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois, USA.
| | - Oded Lewinson
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
8
|
Yang J, Gao M, Wang J, He C, Wang X, Liu L. Structural basis of copper binding by a dimeric periplasmic protein forming a six-helical bundle. J Inorg Biochem 2022; 229:111728. [DOI: 10.1016/j.jinorgbio.2022.111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
|
9
|
A biophotoelectrochemical approach to unravelling the role of cyanobacterial cell structures in exoelectrogenesis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
A protease-mediated mechanism regulates the cytochrome c 6/plastocyanin switch in Synechocystis sp. PCC 6803. Proc Natl Acad Sci U S A 2021; 118:2017898118. [PMID: 33495331 DOI: 10.1073/pnas.2017898118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
After the Great Oxidation Event (GOE), iron availability was greatly decreased, and photosynthetic organisms evolved several alternative proteins and mechanisms. One of these proteins, plastocyanin, is a type I blue-copper protein that can replace cytochrome c 6 as a soluble electron carrier between cytochrome b 6 f and photosystem I. In most cyanobacteria, expression of these two alternative proteins is regulated by copper availability, but the regulatory system remains unknown. Herein, we provide evidence that the regulatory system is composed of a BlaI/CopY-family transcription factor (PetR) and a BlaR-membrane protease (PetP). PetR represses petE (plastocyanin) expression and activates petJ (cytochrome c 6), while PetP controls PetR levels in vivo. Using whole-cell extracts, we demonstrated that PetR degradation requires both PetP and copper. Transcriptomic analysis revealed that the PetRP system regulates only four genes (petE, petJ, slr0601, and slr0602), highlighting its specificity. Furthermore, the presence of petE and petRP in early branching cyanobacteria indicates that acquisition of these genes could represent an early adaptation to decreased iron bioavailability following the GOE.
Collapse
|
11
|
Giachino A, Focarelli F, Marles-Wright J, Waldron KJ. Synthetic biology approaches to copper remediation: bioleaching, accumulation and recycling. FEMS Microbiol Ecol 2021; 97:6021318. [PMID: 33501489 DOI: 10.1093/femsec/fiaa249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
One of the current aims of synthetic biology is the development of novel microorganisms that can mine economically important elements from the environment or remediate toxic waste compounds. Copper, in particular, is a high-priority target for bioremediation owing to its extensive use in the food, metal and electronic industries and its resulting common presence as an environmental pollutant. Even though microbe-aided copper biomining is a mature technology, its application to waste treatment and remediation of contaminated sites still requires further research and development. Crucially, any engineered copper-remediating chassis must survive in copper-rich environments and adapt to copper toxicity; they also require bespoke adaptations to specifically extract copper and safely accumulate it as a human-recoverable deposit to enable biorecycling. Here, we review current strategies in copper bioremediation, biomining and biorecycling, as well as strategies that extant bacteria use to enhance copper tolerance, accumulation and mineralization in the native environment. By describing the existing toolbox of copper homeostasis proteins from naturally occurring bacteria, we show how these modular systems can be exploited through synthetic biology to enhance the properties of engineered microbes for biotechnological copper recovery applications.
Collapse
Affiliation(s)
- Andrea Giachino
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Francesca Focarelli
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Jon Marles-Wright
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Kevin J Waldron
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
12
|
Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci Rep 2021; 40:222317. [PMID: 32149336 PMCID: PMC7133116 DOI: 10.1042/bsr20193325] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Cyanobacteria are key organisms in the global ecosystem, useful models for studying metabolic and physiological processes conserved in photosynthetic organisms, and potential renewable platforms for production of chemicals. Characterizing cyanobacterial metabolism and physiology is key to understanding their role in the environment and unlocking their potential for biotechnology applications. Many aspects of cyanobacterial biology differ from heterotrophic bacteria. For example, most cyanobacteria incorporate a series of internal thylakoid membranes where both oxygenic photosynthesis and respiration occur, while CO2 fixation takes place in specialized compartments termed carboxysomes. In this review, we provide a comprehensive summary of our knowledge on cyanobacterial physiology and the pathways in Synechocystis sp. PCC 6803 (Synechocystis) involved in biosynthesis of sugar-based metabolites, amino acids, nucleotides, lipids, cofactors, vitamins, isoprenoids, pigments and cell wall components, in addition to the proteins involved in metabolite transport. While some pathways are conserved between model cyanobacteria, such as Synechocystis, and model heterotrophic bacteria like Escherichia coli, many enzymes and/or pathways involved in the biosynthesis of key metabolites in cyanobacteria have not been completely characterized. These include pathways required for biosynthesis of chorismate and membrane lipids, nucleotides, several amino acids, vitamins and cofactors, and isoprenoids such as plastoquinone, carotenoids, and tocopherols. Moreover, our understanding of photorespiration, lipopolysaccharide assembly and transport, and degradation of lipids, sucrose, most vitamins and amino acids, and haem, is incomplete. We discuss tools that may aid our understanding of cyanobacterial metabolism, notably CyanoSource, a barcoded library of targeted Synechocystis mutants, which will significantly accelerate characterization of individual proteins.
Collapse
|
13
|
Dienst D, Wichmann J, Mantovani O, Rodrigues JS, Lindberg P. High density cultivation for efficient sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803. Sci Rep 2020; 10:5932. [PMID: 32246065 PMCID: PMC7125158 DOI: 10.1038/s41598-020-62681-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/05/2020] [Indexed: 12/23/2022] Open
Abstract
Cyanobacteria and microalgae are attractive photoautotrophic host systems for climate-friendly production of fuels and other value-added biochemicals. However, for economic applications further development and implementation of efficient and sustainable cultivation strategies are essential. Here, we present a comparative study on cyanobacterial sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803 using a commercial lab-scale High Density Cultivation (HDC) platform in the presence of dodecane as in-situ extractant. Operating in a two-step semi-batch mode over a period of eight days, volumetric yields of (E)-α-bisabolene were more than two orders of magnitude higher than previously reported for cyanobacteria, with final titers of 179.4 ± 20.7 mg * L−1. Likewise, yields of the sesquiterpene alcohols (−)-patchoulol and (−)-α-bisabolol were many times higher than under reference conditions, with final titers of 17.3 ± 1.85 mg * L−1 and 96.3 ± 2.2 mg * L−1, respectively. While specific productivity was compromised particularly for (E)-α-bisabolene in the HDC system during phases of high biomass accumulation rates, volumetric productivity enhancements during linear growth at high densities were more pronounced for (E)-α-bisabolene than for the hydroxylated terpenoids. Together, this study provides additional insights into cell density-related process characteristics, introducing HDC as highly efficient strategy for phototrophic terpenoid production in cyanobacteria.
Collapse
Affiliation(s)
- Dennis Dienst
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Julian Wichmann
- Faculty of Biology - Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Oliver Mantovani
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - João S Rodrigues
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden.
| |
Collapse
|
14
|
Díaz-Troya S, Roldán M, Mallén-Ponce MJ, Ortega-Martínez P, Florencio FJ. Lethality caused by ADP-glucose accumulation is suppressed by salt-induced carbon flux redirection in cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2005-2017. [PMID: 31858138 PMCID: PMC7242066 DOI: 10.1093/jxb/erz559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Cyanobacteria are widely distributed photosynthetic organisms. During the day they store carbon, mainly as glycogen, to provide the energy and carbon source they require for maintenance during the night. Here, we generate a mutant strain of the freshwater cyanobacterium Synechocystis sp. PCC 6803 lacking both glycogen synthases. This mutant has a lethal phenotype due to massive accumulation of ADP-glucose, the substrate of glycogen synthases. This accumulation leads to alterations in its photosynthetic capacity and a dramatic decrease in the adenylate energy charge of the cell to values as low as 0.1. Lack of ADP-glucose pyrophosphorylase, the enzyme responsible for ADP-glucose synthesis, or reintroduction of any of the glycogen synthases abolishes the lethal phenotype. Viability of the glycogen synthase mutant is also fully recovered in NaCl-supplemented medium, which redirects the surplus of ADP-glucose to synthesize the osmolite glucosylglycerol. This alternative metabolic sink also suppresses phenotypes associated with the defective response to nitrogen deprivation characteristic of glycogen-less mutants, restoring the capacity to degrade phycobiliproteins. Thus, our system is an excellent example of how inadequate management of the adenine nucleotide pools results in a lethal phenotype, and the influence of metabolic carbon flux in cell viability and fitness.
Collapse
Affiliation(s)
- Sandra Díaz-Troya
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - Miguel Roldán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - Pablo Ortega-Martínez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
| |
Collapse
|
15
|
Till P, Toepel J, Bühler B, Mach RL, Mach-Aigner AR. Regulatory systems for gene expression control in cyanobacteria. Appl Microbiol Biotechnol 2020; 104:1977-1991. [PMID: 31965222 PMCID: PMC7007895 DOI: 10.1007/s00253-019-10344-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/21/2019] [Accepted: 12/28/2019] [Indexed: 11/24/2022]
Abstract
As photosynthetic microbes, cyanobacteria are attractive hosts for the production of high-value molecules from CO2 and light. Strategies for genetic engineering and tightly controlled gene expression are essential for the biotechnological application of these organisms. Numerous heterologous or native promoter systems were used for constitutive and inducible expression, yet many of them suffer either from leakiness or from a low expression output. Anyway, in recent years, existing systems have been improved and new promoters have been discovered or engineered for cyanobacteria. Moreover, alternative tools and strategies for expression control such as riboswitches, riboregulators or genetic circuits have been developed. In this mini-review, we provide a broad overview on the different tools and approaches for the regulation of gene expression in cyanobacteria and explain their advantages and disadvantages.
Collapse
Affiliation(s)
- Petra Till
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz-Centre for Environmental Research GmbH-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research GmbH-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
| |
Collapse
|
16
|
Liu L, Gueguen-Chaignon V, Gonçalves IR, Rascle C, Rigault M, Dellagi A, Loisel E, Poussereau N, Rodrigue A, Terradot L, Condemine G. A secreted metal-binding protein protects necrotrophic phytopathogens from reactive oxygen species. Nat Commun 2019; 10:4853. [PMID: 31649262 PMCID: PMC6813330 DOI: 10.1038/s41467-019-12826-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/27/2019] [Indexed: 11/13/2022] Open
Abstract
Few secreted proteins involved in plant infection common to necrotrophic bacteria, fungi and oomycetes have been identified except for plant cell wall-degrading enzymes. Here we study a family of iron-binding proteins that is present in Gram-negative and Gram-positive bacteria, fungi, oomycetes and some animals. Homolog proteins in the phytopathogenic bacterium Dickeya dadantii (IbpS) and the fungal necrotroph Botrytis cinerea (BcIbp) are involved in plant infection. IbpS is secreted, can bind iron and copper, and protects the bacteria against H2O2-induced death. Its 1.7 Å crystal structure reveals a classical Venus Fly trap fold that forms dimers in solution and in the crystal. We propose that secreted Ibp proteins binds exogenous metals and thus limit intracellular metal accumulation and ROS formation in the microorganisms. The authors identify a family of iron-binding proteins that is present in phytopathogenic bacteria, fungi and oomycetes. Some of these proteins are secreted, bind metals, protect the pathogen from H2O2-induced death, and are involved in plant infection.
Collapse
Affiliation(s)
- Lulu Liu
- Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS, Université de Lyon, INSA de Lyon, 69622, Villeurbanne, France
| | | | - Isabelle R Gonçalves
- Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS, Université de Lyon, INSA de Lyon, 69622, Villeurbanne, France
| | - Christine Rascle
- Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS, Université de Lyon, INSA de Lyon, 69622, Villeurbanne, France
| | - Martine Rigault
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, 78026, Versailles, France
| | - Alia Dellagi
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, 78026, Versailles, France
| | - Elise Loisel
- Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS, Université de Lyon, INSA de Lyon, 69622, Villeurbanne, France
| | - Nathalie Poussereau
- Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS, Université de Lyon, INSA de Lyon, 69622, Villeurbanne, France
| | - Agnès Rodrigue
- Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS, Université de Lyon, INSA de Lyon, 69622, Villeurbanne, France
| | - Laurent Terradot
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS, Institut de Biologie et Chimie des Protéines, Université de Lyon, 69367, Lyon, France.
| | - Guy Condemine
- Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS, Université de Lyon, INSA de Lyon, 69622, Villeurbanne, France.
| |
Collapse
|
17
|
Subedi P, Paxman JJ, Wang G, Ukuwela AA, Xiao Z, Heras B. The Scs disulfide reductase system cooperates with the metallochaperone CueP in Salmonella copper resistance. J Biol Chem 2019; 294:15876-15888. [PMID: 31444272 DOI: 10.1074/jbc.ra119.010164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/21/2019] [Indexed: 12/31/2022] Open
Abstract
The human pathogen Salmonella enterica serovar Typhimurium (S Typhimurium) contains a complex disulfide bond (Dsb) catalytic machinery. This machinery encompasses multiple Dsb thiol-disulfide oxidoreductases that mediate oxidative protein folding and a less-characterized suppressor of copper sensitivity (scs) gene cluster, associated with increased tolerance to copper. To better understand the function of the Salmonella Scs system, here we characterized two of its key components, the membrane protein ScsB and the periplasmic protein ScsC. Our results revealed that these two proteins form a redox pair in which the electron transfer from the periplasmic domain of ScsB (n-ScsB) to ScsC is thermodynamically driven. We also demonstrate that the Scs reducing pathway remains separate from the Dsb oxidizing pathways and thereby avoids futile redox cycles. Additionally, we provide new insight into the molecular mechanism underlying Scs-mediated copper tolerance in Salmonella We show that both ScsB and ScsC can bind toxic copper(I) with femtomolar affinities and transfer it to the periplasmic copper metallochaperone CueP. Our results indicate that the Salmonella Scs machinery has evolved a dual mode of action, capable of transferring reducing power to the oxidizing periplasm and protecting against copper stress by cooperating with the cue regulon, a major copper resistance mechanism in Salmonella. Overall, these findings expand our understanding of the functional diversity of Dsb-like systems, ranging from those mediating oxidative folding of proteins required for infection to those contributing to defense mechanisms against oxidative stress and copper toxicity, critical traits for niche adaptation and survival.
Collapse
Affiliation(s)
- Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3083, Australia
| | - Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3083, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3083, Australia
| | - Ashwinie A Ukuwela
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhiguang Xiao
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.,Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3083, Australia
| |
Collapse
|
18
|
Characterization of TrxC, an Atypical Thioredoxin Exclusively Present in Cyanobacteria. Antioxidants (Basel) 2018; 7:antiox7110164. [PMID: 30428557 PMCID: PMC6262485 DOI: 10.3390/antiox7110164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria form a diverse group of oxygenic photosynthetic prokaryotes considered to be the antecessor of plant chloroplast. They contain four different thioredoxins isoforms, three of them corresponding to m, x and y type present in plant chloroplast, while the fourth one (named TrxC) is exclusively found in cyanobacteria. TrxC has a modified active site (WCGLC) instead of the canonical (WCGPC) present in most thioredoxins. We have purified it and assayed its activity but surprisingly TrxC lacked all the classical activities, such as insulin precipitation or activation of the fructose-1,6-bisphosphatase. Mutants lacking trxC or over-expressing it were generated in the model cyanobacterium Synechocystis sp. PCC 6803 and their phenotypes have been analyzed. The ΔtrxC mutant grew at similar rates to WT in all conditions tested although it showed an increased carotenoid content especially under low carbon conditions. Overexpression strains showed reduced growth under the same conditions and accumulated lower amounts of carotenoids. They also showed lower oxygen evolution rates at high light but higher Fv’/Fm’ and Non-photochemical-quenching (NPQ) in dark adapted cells, suggesting a more oxidized plastoquinone pool. All these data suggest that TrxC might have a role in regulating photosynthetic adaptation to low carbon and/or high light conditions.
Collapse
|
19
|
Synthetic Gene Regulation in Cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:317-355. [DOI: 10.1007/978-981-13-0854-3_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Vincent M, Duval RE, Hartemann P, Engels-Deutsch M. Contact killing and antimicrobial properties of copper. J Appl Microbiol 2018; 124:1032-1046. [PMID: 29280540 DOI: 10.1111/jam.13681] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
With the emergence of antibiotic resistance, the interest for antimicrobial agents has recently increased again in public health. Copper was recognized in 2008 by the United States Environmental Protection Agency (EPA) as the first metallic antimicrobial agent. This led to many investigations of the various properties of copper as an antibacterial, antifungal and antiviral agent. This review summarizes the latest findings about 'contact killing', the mechanism of action of copper nanoparticles and the different ways micro-organisms develop resistance to copper.
Collapse
Affiliation(s)
- M Vincent
- CNRS, LEMTA, UMR 7563, Vandœuvre-lès-Nancy, France.,Université de Lorraine, LEMTA, UMR 7563, Vandœuvre-lès Nancy, France
| | - R E Duval
- CNRS, UMR 7565, SRSMC, Vandœuvre-lès-Nancy, France.,Université de Lorraine, UMR 7565, SRSMC, Nancy, France.,ABC Platform®, Nancy, France
| | - P Hartemann
- Faculté de Médecine, EA 7298, ERAMBO, DESP, Vandœuvre-lès-Nancy, France
| | - M Engels-Deutsch
- CNRS, LEMTA, UMR 7563, Vandœuvre-lès-Nancy, France.,Université de Lorraine, LEMTA, UMR 7563, Vandœuvre-lès Nancy, France.,Faculté de Médecine, EA 7298, ERAMBO, DESP, Vandœuvre-lès-Nancy, France
| |
Collapse
|
21
|
Giner-Lamia J, López-Maury L, Florencio FJ. Ni interferes in the Cu-regulated transcriptional switchpetJ/petEinSynechocystissp. PCC 6803. FEBS Lett 2016; 590:3639-3648. [DOI: 10.1002/1873-3468.12438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/09/2016] [Accepted: 09/20/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Joaquín Giner-Lamia
- Instituto de Bioquímica Vegetal y Fotosíntesis; CSIC-Universidad de Sevilla; Spain
| | - Luis López-Maury
- Instituto de Bioquímica Vegetal y Fotosíntesis; CSIC-Universidad de Sevilla; Spain
| | | |
Collapse
|
22
|
Zhao S, Wang X, Niu G, Dong W, Wang J, Fang Y, Lin Y, Liu L. Structural basis for copper/silver binding by theSynechocystismetallochaperone CopM. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:997-1005. [DOI: 10.1107/s2059798316011943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/21/2016] [Indexed: 11/11/2022]
Abstract
Copper homeostasis integrates multiple processes from sensing to storage and efflux out of the cell. CopM is a cyanobacterial metallochaperone, the gene for which is located upstream of a two-component system for copper resistance, but the molecular basis for copper recognition by this four-helical bundle protein is unknown. Here, crystal structures of CopM in apo, copper-bound and silver-bound forms are reported. Monovalent copper/silver ions are buried within the bundle core; divalent copper ions are found on the surface of the bundle. The monovalent copper/silver-binding site is constituted by two consecutive histidines and is conserved in a previously functionally unknown protein family. The structural analyses show two conformational states and suggest that flexibility in the first α-helix is related to the metallochaperone function. These results also reveal functional diversity from a protein family with a simple four-helical fold.
Collapse
|
23
|
Giner-Lamia J, Pereira SB, Bovea-Marco M, Futschik ME, Tamagnini P, Oliveira P. Extracellular Proteins: Novel Key Components of Metal Resistance in Cyanobacteria? Front Microbiol 2016; 7:878. [PMID: 27375598 PMCID: PMC4894872 DOI: 10.3389/fmicb.2016.00878] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/24/2016] [Indexed: 11/13/2022] Open
Abstract
Metals are essential for all living organisms and required for fundamental biochemical processes. However, when in excess, metals can turn into highly-toxic agents able to disrupt cell membranes, alter enzymatic activities, and damage DNA. Metal concentrations are therefore tightly controlled inside cells, particularly in cyanobacteria. Cyanobacteria are ecologically relevant prokaryotes that perform oxygenic photosynthesis and can be found in many different marine and freshwater ecosystems, including environments contaminated with heavy metals. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been widely studied in cyanobacteria. So far, most studies have focused on how cells are capable of controlling their internal metal pools, with a strong bias toward the analysis of intracellular processes. Ultrastructure, modulation of physiology, dynamic changes in transcription and protein levels have been studied, but what takes place in the extracellular environment when cells are exposed to an unbalanced metal availability remains largely unknown. The interest in studying the subset of proteins present in the extracellular space has only recently begun and the identification and functional analysis of the cyanobacterial exoproteomes are just emerging. Remarkably, metal-related proteins such as the copper-chaperone CopM or the iron-binding protein FutA2 have already been identified outside the cell. With this perspective, we aim to raise the awareness that metal-resistance mechanisms are not yet fully known and hope to motivate future studies assessing the role of extracellular proteins on bacterial metal homeostasis, with a special focus on cyanobacteria.
Collapse
Affiliation(s)
- Joaquín Giner-Lamia
- Systems Biology and Bioinformatics Laboratory, Centro de Ciências do Mar, Universidade do AlgarveFaro, Portugal; Center for Biomedical Research, Universidade do AlgarveFaro, Portugal
| | - Sara B Pereira
- Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | | | - Matthias E Futschik
- Systems Biology and Bioinformatics Laboratory, Centro de Ciências do Mar, Universidade do AlgarveFaro, Portugal; Center for Biomedical Research, Universidade do AlgarveFaro, Portugal
| | - Paula Tamagnini
- Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Faculdade de Ciências, Departamento de Biologia, Universidade do PortoPorto, Portugal
| | - Paulo Oliveira
- Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| |
Collapse
|
24
|
Čelešnik H, Tanšek A, Tahirović A, Vižintin A, Mustar J, Vidmar V, Dolinar M. Biosafety of biotechnologically important microalgae: intrinsic suicide switch implementation in cyanobacterium Synechocystis sp. PCC 6803. Biol Open 2016; 5:519-28. [PMID: 27029902 PMCID: PMC4890671 DOI: 10.1242/bio.017129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In recent years, photosynthetic autotrophic cyanobacteria have attracted interest for biotechnological applications for sustainable production of valuable metabolites. Although biosafety issues can have a great impact on public acceptance of cyanobacterial biotechnology, biosafety of genetically modified cyanobacteria has remained largely unexplored. We set out to incorporate biocontainment systems in the model cyanobacterium Synechocystis sp. PCC 6803. Plasmid-encoded safeguards were constructed using the nonspecific nuclease NucA from Anabaena combined with different metal-ion inducible promoters. In this manner, conditional lethality was dependent on intracellular DNA degradation for regulated autokilling as well as preclusion of horizontal gene transfer. In cells carrying the suicide switch comprising the nucA gene fused to a variant of the copM promoter, efficient inducible autokilling was elicited. Parallel to nuclease-based safeguards, cyanobacterial toxin/antitoxin (TA) modules were examined in biosafety switches. Rewiring of Synechocystis TA pairs ssr1114/slr0664 and slr6101/slr6100 for conditional lethality using metal-ion responsive promoters resulted in reduced growth, rather than cell killing, suggesting cells could cope with elevated toxin levels. Overall, promoter properties and translation efficiency influenced the efficacy of biocontainment systems. Several metal-ion promoters were tested in the context of safeguards, and selected promoters, including a nrsB variant, were characterized by beta-galactosidase reporter assay. Summary: Biosafety of biotechnologically important microalgae was addressed by suicide switch implementation in cyanobacterium Synechocystis sp. PCC 6803. This is the first report of biocontainment safeguards in cyanobacteria.
Collapse
Affiliation(s)
- Helena Čelešnik
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Anja Tanšek
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Aneja Tahirović
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Angelika Vižintin
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Jernej Mustar
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Vita Vidmar
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Marko Dolinar
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
25
|
Gillan DC. Metal resistance systems in cultivated bacteria: are they found in complex communities? Curr Opin Biotechnol 2016; 38:123-30. [DOI: 10.1016/j.copbio.2016.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 12/11/2022]
|
26
|
Abstract
In the absence of a tight control of copper entrance into cells, bacteria have evolved different systems to control copper concentration within the cytoplasm and the periplasm. Central to these systems, the Cu+ ATPase CopA plays a major role in copper tolerance and translocates copper from the cytoplasm to the periplasm. The fate of copper in the periplasm varies among species. Copper can be sequestered, oxidized, or released outside the cells. Here we describe the identification of CopI, a periplasmic protein present in many proteobacteria, and show its requirement for copper tolerance in Rubrivivax gelatinosus. The ΔcopI mutant is more susceptible to copper than the Cu+ ATPase copA mutant. CopI is induced by copper, localized in the periplasm and could bind copper. Interestingly, copper affects cytochrome c membrane complexes (cbb3 oxidase and photosystem) in both ΔcopI and copA-null mutants, but the causes are different. In the copA mutant, heme and chlorophyll synthesis are affected, whereas in ΔcopI mutant, the decrease is a consequence of impaired cytochrome c assembly. This impact on c-type cytochromes would contribute also to the copper toxicity in the periplasm of the wild-type cells when they are exposed to high copper concentrations. Copper is an essential cation required as a cofactor in enzymes involved in vital processes such as respiration, photosynthesis, free radical scavenging, and pathogenesis. However, copper is highly toxic and has been implicated in disorders in all organisms, including humans, because it can catalyze the production of toxic reactive oxygen species and targets various biosynthesis pathways. Identifying copper targets, provides insights into copper toxicity and homeostatic mechanisms for copper tolerance. In this work, we describe for the first time a direct effect of excess copper on cytochrome c assembly. We show that excess copper specifically affects periplasmic and membrane cytochromes c, thus suggesting that the copper toxicity targets c-type cytochrome biogenesis.
Collapse
|
27
|
Gittins JR. Cloning of a copper resistance gene cluster from the cyanobacteriumSynechocystissp. PCC 6803 by recombineering recovery. FEBS Lett 2015; 589:1872-8. [DOI: 10.1016/j.febslet.2015.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/18/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
|
28
|
Huertas MJ, López-Maury L, Giner-Lamia J, Sánchez-Riego AM, Florencio FJ. Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life (Basel) 2014; 4:865-86. [PMID: 25501581 PMCID: PMC4284471 DOI: 10.3390/life4040865] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/27/2014] [Accepted: 12/04/2014] [Indexed: 11/16/2022] Open
Abstract
Traces of metal are required for fundamental biochemical processes, such as photosynthesis and respiration. Cyanobacteria metal homeostasis acquires an important role because the photosynthetic machinery imposes a high demand for metals, making them a limiting factor for cyanobacteria, especially in the open oceans. On the other hand, in the last two centuries, the metal concentrations in marine environments and lake sediments have increased as a result of several industrial activities. In all cases, cells have to tightly regulate uptake to maintain their intracellular concentrations below toxic levels. Mechanisms to obtain metal under limiting conditions and to protect cells from an excess of metals are present in cyanobacteria. Understanding metal homeostasis in cyanobacteria and the proteins involved will help to evaluate the use of these microorganisms in metal bioremediation. Furthermore, it will also help to understand how metal availability impacts primary production in the oceans. In this review, we will focus on copper, nickel, cobalt and arsenic (a toxic metalloid) metabolism, which has been mainly analyzed in model cyanobacterium Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- María José Huertas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, E-41092 Sevilla, Spain.
| | - Luis López-Maury
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, E-41092 Sevilla, Spain.
| | - Joaquín Giner-Lamia
- Systems Biology and Bioinformatics Laboratory, IBB-CBME, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Ana María Sánchez-Riego
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, E-41092 Sevilla, Spain.
| | - Francisco Javier Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, E-41092 Sevilla, Spain.
| |
Collapse
|