1
|
Ruddell B, Hassall A, Moss WN, Sahin O, Plummer PJ, Zhang Q, Kreuder AJ. Direct interaction of small non-coding RNAs CjNC140 and CjNC110 optimizes expression of key pathogenic phenotypes of Campylobacter jejuni. mBio 2023; 14:e0083323. [PMID: 37409826 PMCID: PMC10470494 DOI: 10.1128/mbio.00833-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 07/07/2023] Open
Abstract
Small non-coding RNAs (sRNAs) are important players in modulating gene expression in bacterial pathogens, but their functions are largely undetermined in Campylobacter jejuni, an important cause of foodborne gastroenteritis in humans. In this study, we elucidated the functions of sRNA CjNC140 and its interaction with CjNC110, a previously characterized sRNA involved in the regulation of several virulence phenotypes of C. jejuni. Inactivation of CjNC140 increased motility, autoagglutination, L-methionine concentration, autoinducer-2 production, hydrogen peroxide resistance, and early chicken colonization, indicating a primarily inhibitory role of CjNC140 for these phenotypes. Apart from motility, all these effects directly contrasted the previously demonstrated positive regulation by CjNC110, suggesting that CjNC110 and CjNC140 operate in an opposite manner to modulate physiologic processes in C. jejuni. RNAseq and northern blotting further demonstrated that expression of CjNC140 increased in the absence of CjNC110, while expression of CjNC110 decreased in the absence of CjNC140, suggesting a possibility of their direct interaction. Indeed, electrophoretic mobility shift assay demonstrated a direct binding between the two sRNAs via GA- (CjNC110) and CU- (CjNC140) rich stem-loops. Additionally, RNAseq and follow-up experiments identified that CjNC140 positively regulates p19, which encodes a key iron uptake transporter in Campylobacter. Furthermore, computational analysis revealed both CjNC140 and CjNC110 are highly conserved in C. jejuni, and the predicted secondary structures support CjNC140 as a functional homolog of the iron regulatory sRNA, RyhB. These findings establish CjNC140 and CjNC110 as a key checks-and- balances mechanism in maintaining homeostasis of gene expression and optimizing phenotypes critical for C. jejuni pathobiology. IMPORTANCE Gene regulation is critical to all aspects of pathogenesis of bacterial disease, and small non-coding RNAs (sRNAs) represent a new frontier in gene regulation of bacteria. In Campylobacter jejuni, the role of sRNAs remains largely unexplored. Here, we investigate the role of two highly conserved sRNAs, CjNC110 and CjNC140, and demonstrate that CjNC140 displays a primarily inhibitory role in contrast to a primarily activating role for CjNC110 for several key virulence-associated phenotypes. Our results also revealed that the sRNA regulatory pathway is intertwined with the iron uptake system, another virulence mechanism critical for in vivo colonization. These findings open a new direction for understanding C. jejuni pathobiology and identify potential targets for intervention for this major foodborne pathogen.
Collapse
Affiliation(s)
- Brandon Ruddell
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| | - Alan Hassall
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Walter N. Moss
- The Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Orhan Sahin
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Paul J. Plummer
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| | - Amanda J. Kreuder
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| |
Collapse
|
2
|
Briones AC, Lorca D, Cofre A, Cabezas CE, Krüger GI, Pardo-Esté C, Baquedano MS, Salinas CR, Espinoza M, Castro-Severyn J, Remonsellez F, Hidalgo AA, Morales EH, Saavedra CP. Genetic regulation of the ompX porin of Salmonella Typhimurium in response to hydrogen peroxide stress. Biol Res 2022; 55:8. [PMID: 35193678 PMCID: PMC8862304 DOI: 10.1186/s40659-022-00377-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/30/2022] [Indexed: 11/11/2022] Open
Abstract
Background Salmonella Typhimurium is a Gram-negative pathogen that causes a systemic disease in mice resembling typhoid fever. During its infective cycle, S. Typhimurium is phagocytized by macrophages and proliferates inside a Salmonella-containing vacuole where Salmonella is exposed and survives oxidative stress induced by H2O2 through modulation of gene expression. After exposure of Salmonella to H2O2, the expression of the porin-encoding gene ompX increases, as previously shown by microarray analysis. Expression of ompX mRNA is regulated at a post-transcriptional level by MicA and CyaR sRNAs in aerobiosis. In addition, sequence analysis predicts a site for OxyS sRNA in ompX mRNA. Results In this work we sought to evaluate the transcriptional and post-transcriptional regulation of ompX under H2O2 stress. We demonstrate that ompX expression is induced at the transcriptional level in S. Typhimurium under such conditions. Unexpectedly, an increase in ompX gene transcript and promoter activity after challenges with H2O2 does not translate into increased protein levels in the wild-type strain, suggesting that ompX mRNA is also regulated at a post-transcriptional level, at least under oxidative stress. In silico gene sequence analysis predicted that sRNAs CyaR, MicA, and OxyS could regulate ompX mRNA levels. Using rifampicin to inhibit mRNA expression, we show that the sRNAs (MicA, CyaR and OxyS) and the sRNA:mRNA chaperone Hfq positively modulate ompX mRNA levels under H2O2-induced stress in Salmonella during the exponential growth phase in Lennox broth. Conclusions Our results demonstrate that ompX mRNA is regulated in response to H2O2 by the sRNAs CyaR, MicA and OxyS is Salmonella Typhimurium. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00377-3.
Collapse
Affiliation(s)
- A C Briones
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - D Lorca
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - A Cofre
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - C E Cabezas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - G I Krüger
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - C Pardo-Esté
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - M S Baquedano
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - C R Salinas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - M Espinoza
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - J Castro-Severyn
- Laboratorio de Microbiología Aplicada Y Extremófilos, Facultad de Ingeniería Y Ciencias Geológicas, Universidad Católica 83 del Norte, Antofagasta, Chile
| | - F Remonsellez
- Laboratorio de Microbiología Aplicada Y Extremófilos, Facultad de Ingeniería Y Ciencias Geológicas, Universidad Católica 83 del Norte, Antofagasta, Chile.,Centro de Investigación Tecnológica del Agua en El Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
| | - A A Hidalgo
- Laboratory of Molecular Pathogenesis and Antimicrobials, Escuela de Química Y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - E H Morales
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - C P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
3
|
Fernández-Fernández R, Hernández SB, Puerta-Fernández E, Sánchez-Romero MA, Urdaneta V, Casadesús J. Evidence for Involvement of the Salmonella enterica Z-Ring Assembly Factors ZapA and ZapB in Resistance to Bile. Front Microbiol 2021; 12:647305. [PMID: 33717045 PMCID: PMC7947894 DOI: 10.3389/fmicb.2021.647305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Genes annotated as ygfE and yiiU in the genome of Salmonella enterica serovar Typhimurium encode proteins homologous to Escherichia coli cell division factors ZapA and ZapB, respectively. ZapA- and ZapB- mutants of S. enterica are bile-sensitive. The amount of zapB mRNA increases in the presence of a sublethal concentration of sodium deoxycholate (DOC) while zapA mRNA remains unaffected. Increased zapB mRNA level in the presence of DOC is not caused by upregulation of zapB transcription but by increased stability of zapB mRNA. This increase is suppressed by an hfq mutation, suggesting the involvement of a small regulatory RNA. We provide evidence that such sRNA is MicA. The ZapB protein is degraded in the presence of DOC, and degradation appears to involve the Lon protease. We propose that increased stability of zapB mRNA in the presence of DOC may counter degradation of bile-damaged ZapB, thereby providing sufficient level of functional ZapB protein to permit Z-ring assembly in the presence of bile.
Collapse
Affiliation(s)
| | - Sara B Hernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | | | - Verónica Urdaneta
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
4
|
Small Noncoding RNA CjNC110 Influences Motility, Autoagglutination, AI-2 Localization, Hydrogen Peroxide Sensitivity, and Chicken Colonization in Campylobacter jejuni. Infect Immun 2020; 88:IAI.00245-20. [PMID: 32366573 DOI: 10.1128/iai.00245-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Small noncoding RNAs (ncRNAs) are involved in many important physiological functions in pathogenic microorganisms. Previous studies have identified the presence of noncoding RNAs in the major zoonotic pathogen Campylobacter jejuni; however, few have been functionally characterized to date. CjNC110 is a conserved ncRNA in C. jejuni, located downstream of the luxS gene, which is responsible for the production of the quorum sensing molecule autoinducer-2 (AI-2). In this study, we utilized strand specific high-throughput RNAseq to identify potential targets or interactive partners of CjNC110 in a sheep abortion clone of C. jejuni These data were then utilized to focus further phenotypic evaluation of the role of CjNC110 in motility, autoagglutination, quorum sensing, hydrogen peroxide sensitivity, and chicken colonization in C. jejuni Inactivation of the CjNC110 ncRNA led to a statistically significant decrease in autoagglutination ability as well as increased motility and hydrogen peroxide sensitivity compared to the wild-type. Extracellular AI-2 detection was decreased in ΔCjNC110; however, intracellular AI-2 accumulation was significantly increased, suggesting a key role of CjNC110 in modulating the transport of AI-2. Notably, ΔCjNC110 also showed a decreased ability to colonize chickens. Complementation of CjNC110 restored all phenotypic changes back to wild-type levels. The collective results of the phenotypic and transcriptomic changes observed in our data provide valuable insights into the pathobiology of C. jejuni sheep abortion clone and strongly suggest that CjNC110 plays an important role in the regulation of energy taxis, flagellar glycosylation, cellular communication via quorum sensing, oxidative stress tolerance, and chicken colonization in this important zoonotic pathogen.
Collapse
|
5
|
Ferrand A, Vergalli J, Pagès JM, Davin-Regli A. An Intertwined Network of Regulation Controls Membrane Permeability Including Drug Influx and Efflux in Enterobacteriaceae. Microorganisms 2020; 8:E833. [PMID: 32492979 PMCID: PMC7355843 DOI: 10.3390/microorganisms8060833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022] Open
Abstract
The transport of small molecules across membranes is a pivotal step for controlling the drug concentration into the bacterial cell and it efficiently contributes to the antibiotic susceptibility in Enterobacteriaceae. Two types of membrane transports, passive and active, usually represented by porins and efflux pumps, are involved in this process. Importantly, the expression of these transporters and channels are modulated by an armamentarium of tangled regulatory systems. Among them, Helix-turn-Helix (HTH) family regulators (including the AraC/XylS family) and the two-component systems (TCS) play a key role in bacterial adaptation to environmental stresses and can manage a decrease of porin expression associated with an increase of efflux transporters expression. In the present review, we highlight some recent genetic and functional studies that have substantially contributed to our better understanding of the sophisticated mechanisms controlling the transport of small solutes (antibiotics) across the membrane of Enterobacteriaceae. This information is discussed, taking into account the worrying context of clinical antibiotic resistance and fitness of bacterial pathogens. The localization and relevance of mutations identified in the respective regulation cascades in clinical resistant strains are discussed. The possible way to bypass the membrane/transport barriers is described in the perspective of developing new therapeutic targets to combat bacterial resistance.
Collapse
Affiliation(s)
| | | | | | - Anne Davin-Regli
- UMR_MD1, U-1261, Aix-Marseille University, INSERM, SSA, IRBA, MCT, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille CEDEX 05, France; (A.F.); (J.V.); (J.-M.P.)
| |
Collapse
|
6
|
Kliemt J, Jaschinski K, Soppa J. A Haloarchaeal Small Regulatory RNA (sRNA) Is Essential for Rapid Adaptation to Phosphate Starvation Conditions. Front Microbiol 2019; 10:1219. [PMID: 31231327 PMCID: PMC6560208 DOI: 10.3389/fmicb.2019.01219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/15/2019] [Indexed: 11/26/2022] Open
Abstract
The haloarchaeon Haloferax volcanii contains nearly 2800 small non-coding RNAs (sRNAs). One intergenic sRNA, sRNA132, was chosen for a detailed characterization. A deletion mutant had a growth defect and thus underscored the importance of sRNA132. A microarray analysis identified the transcript of an operon for a phosphate-specific ABC transporter as a putative target of sRNA132. Both the sRNA132 and the operon transcript accumulated under low phosphate concentrations, indicating a positive regulatory role of sRNA132. A kinetic analysis revealed that sRNA132 is essential shortly after the onset of phosphate starvation, while other regulatory processes take over after several hours. Comparison of the transcriptomes of wild-type and the sRNA132 gene deletion mutant 30 min after the onset of phosphate starvation revealed that sRNA132 controls a regulon of about 40 genes. Remarkably, the regulon included a second operon for a phosphate-specific ABC transporter, which also depended on sRNA132 for rapid induction in the absence of phosphate. Competitive growth experiments of the wild-type and ABC transporter operon deletion mutants underscored the importance of both transporters for growth at low phosphate concentrations. Northern blot analyses of four additional members of the sRNA132 regulon verified that all four transcripts depended on sRNA132 for rapid regulation after the onset of phosphate starvation. Importantly, this is the first example for the transient importance of a sRNA for any archaeal and bacterial species. In addition, this study unraveled the first sRNA regulon for haloarchaea.
Collapse
Affiliation(s)
- Jana Kliemt
- Biocentre, Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Katharina Jaschinski
- Biocentre, Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Jörg Soppa
- Biocentre, Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
7
|
Pérez-Reytor D, Plaza N, Espejo RT, Navarrete P, Bastías R, Garcia K. Role of Non-coding Regulatory RNA in the Virulence of Human Pathogenic Vibrios. Front Microbiol 2017; 7:2160. [PMID: 28123382 PMCID: PMC5225090 DOI: 10.3389/fmicb.2016.02160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/22/2016] [Indexed: 12/22/2022] Open
Abstract
In recent decades, the identification of small non-coding RNAs in bacteria has revealed an important regulatory mechanism of gene expression involved in the response to environmental signals and to the control of virulence. In the family Vibrionaceae, which includes several human and animal pathogens, small non-coding RNAs (sRNAs) are closely related to important processes including metabolism, quorum sensing, virulence, and fitness. Studies conducted in silico and experiments using microarrays and high-throughput RNA sequencing have led to the discovery of an unexpected number of sRNAs in Vibrios. The present review discusses the most relevant reports regarding the mechanisms of action of sRNAs and their implications in the virulence of the main human pathogens in the family Vibrionaceae: Vibrio parahaemolyticus, V. vulnificus and V. cholerae.
Collapse
Affiliation(s)
- Diliana Pérez-Reytor
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile San Miguel, Chile
| | - Nicolás Plaza
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de ChileSan Miguel, Chile; Institute of Nutrition and Food Technology, University of ChileSantiago, Chile
| | - Romilio T Espejo
- Institute of Nutrition and Food Technology, University of Chile Santiago, Chile
| | - Paola Navarrete
- Institute of Nutrition and Food Technology, University of Chile Santiago, Chile
| | - Roberto Bastías
- Laboratory of Microbiology, Institute of Biology, Pontificia Universidad Católica de Valparaíso Valparaíso, Chile
| | - Katherine Garcia
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile San Miguel, Chile
| |
Collapse
|
8
|
Abstract
Small regulatory RNAs comprise critically important modulators of gene expression in bacteria, yet very little is known about their prevalence and functions in Rickettsia species. R. conorii, the causative agent of Mediterranean spotted fever, is a tick-borne pathogen that primarily infects microvascular endothelium in humans. We have determined the transcriptional landscape of R. conorii during infection of Human Microvascular Endothelial Cells (HMECs) by strand-specific RNA sequencing to identify 4 riboswitches, 13 trans-acting (intergenic), and 22 cis-acting (antisense) small RNAs (termed ‘Rc_sR’s). Independent expression of four novel trans-acting sRNAs (Rc_sR31, Rc_sR33, Rc_sR35, and Rc_sR42) and known bacterial sRNAs (6S, RNaseP_bact_a, ffs, and α-tmRNA) was next confirmed by Northern hybridization. Comparative analysis during infection of HMECs vis-à-vis tick AAE2 cells revealed significantly higher expression of Rc_sR35 and Rc_sR42 in HMECs, whereas Rc_sR31 and Rc_sR33 were expressed at similar levels in both cell types. We further predicted a total of 502 genes involved in all important biological processes as potential targets of Rc_sRs and validated the interaction of Rc_sR42 with cydA (cytochrome d ubiquinol oxidase subunit I). Our findings constitute the first evidence of the existence of post-transcriptional riboregulatory mechanisms in R. conorii and interactions between a novel Rc_sR and its target mRNA.
Collapse
|