1
|
Wei J, Su J, Wang G, Li W, Wen Z, Liu H. Chitooligosaccharides improves intestinal mucosal immunity and intestinal microbiota in blue foxes. Front Immunol 2024; 15:1506991. [PMID: 39628477 PMCID: PMC11611864 DOI: 10.3389/fimmu.2024.1506991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Objective Gut health is critical to the health of the host. This study was conducted to investigate the effects of Chitooligosaccharides (COS) on intestinal morphology, intestinal barrier, intestinal immunity and cecum microbiota of blue foxes. Methods Seventy-two 125-day-old blue foxes were randomly divided into basal diet (BD) group, 200 ppm COS1 (1.5 kDa) group and 200 ppm COS2 (3 kDa) group for 8 weeks. Results We elucidated that dietary COS1 supplementation promoted the development of intestinal villus morphology in blue foxes. Importantly, COS1 increased the number of goblet cells in duodenum, jejunum and ileum by 27.71%, 23.67%, 14.97% and S-IgA secretion in duodenum, jejunum and ileum by 71.59% and 38.56%, and up-regulate the expression of Occludin and ZO-1 by 50.18% and 148.62%, respectively. Moreover, COS1 promoted the pro-inflammatory and anti-inflammatory balance of small intestinal mucosa, and increased the diversity of cecum microbiota of blue foxes, especially Lactobacillus_agilis and Lactobacillus_murinus, and up-regulated the signaling pathways related to polysaccharide decomposition and utilization. Conclusion Here, we present dietary COS1 (1.5 kDa) can promote intestinal villus development, enhance intestinal barrier function, regulate intestinal immune balance and cecum microbiota homeostasis.
Collapse
Affiliation(s)
- Jiali Wei
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jing Su
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guiwu Wang
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wei Li
- Technological Innovation Center for Fur Animal Breeding of Hebei, Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | | | - Huitao Liu
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
2
|
Li Y, Zhen S, Sun F, Cao L, Wang L. Effects of γ-Aminobutyric Acid on Growth Performance, Immunity, Antioxidant Capacity, and Intestinal Microbiota of Growing Minks. Vet Sci 2024; 11:398. [PMID: 39330777 PMCID: PMC11435872 DOI: 10.3390/vetsci11090398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
The present experiment was conducted to investigate the effects of γ-aminobutyric acid (GABA) on the growth performance, immunity, antioxidant capacity, and intestinal microbiota of growing minks. One hundred minks were evenly allocated across five groups, with each group consisting of 10 males and 10 females. The minks in these groups were fed a basal diet supplemented with γ-aminobutyric acid (GABA) at 0 (control), 10, 20, 30, and 40 mg/kg of diet, respectively. The experiment lasted for eight weeks. The results showed that GABA significantly affected immunity, antioxidant capacity, and intestinal microbiota (p < 0.05). Compared to the control minks, minks in 20, 30, and 40 mg/kg GABA group had greater total protein quantitative (TP), immunoglobulin A (IgA), immunoglobulin M (IgM) content, total antioxidant capacity (T-AOC), and glutathione peroxidase (GSH-Px) activities in serum as well as interleukin-4 (IL-4) level in jejunal mucosa (p < 0.05), and had less serum blood urea nitrogen (BUN) content (p < 0.05). Furthermore, compared with the control, the supplementation of GABA at 30 mg/kg of diet improved average daily feed intake (ADFI) (p < 0.05), increased immunoglobulin G (IgG) content in serum, interleukin-10 (IL-10) and secreted immunoglobulin A (SIgA) levels in jejunal mucosa, and decreased jejunal mucosal interleukin-2 (IL-2), interleukin-12 (IL-12), and interferon-γ (IFN-γ) levels (p < 0.05). The weight and feed intake of males were higher than females, and the feed/gain ratio (F/G) was lower than females (p < 0.05). Males also had greater serum superoxide dismutase (SOD) and GSH-Px activities, and jejunal mucosa IL-2, IL-4, IL-12, SIgA, and IFN-γ levels (p < 0.05), and males had less serum IgA, IgM, and T-AOC contents, and jejunal mucosal tumor necrosis factor-α (TNF-α) level (p < 0.05). The results suggest that the supplementation of GABA at 30 mg/kg of diet can improve immune status and antioxidant capacity, and modulate the intestinal microbiota abundance of growing minks.
Collapse
Affiliation(s)
- Yalin Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Shibo Zhen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Fengxue Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Lin Cao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Lihua Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
3
|
Cao L, Sun F, Ren Q, Jiang Z, Chen J, Li Y, Wang L. Effects of Mink-Origin Enterococcus faecium on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Microbiota of Growing Male Minks. Animals (Basel) 2024; 14:2120. [PMID: 39061581 PMCID: PMC11274025 DOI: 10.3390/ani14142120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The purpose of this experiment was to explore the effects of dietary Enterococcus faecium (EF) on the growth performance, antioxidant capacity, immunity, and intestinal microbiota of growing male minks. A total of 60 male Regal White minks at 12 weeks of age were randomly assigned to two groups, each with 15 replicates of two minks per replicate. The minks in two groups were fed the basal diets and the basal diets with viable Enterococcus faecium (more than 107 cfu/kg of diet), respectively. Compared with the minks in control, Enterococcus faecium minks had heavier body weight (BW) at week 4 and week 8 of the study (p < 0.05), greater average daily gain (ADG), and a lower feed/gain ratio (F/G) of male minks during the initial 4 weeks and the entire 8-week study period (p < 0.05). Furthermore, Enterococcus faecium increased the apparent digestibility of crude protein (CP) and dry matter (DM) compared to the control (p < 0.05). Moreover, Enterococcus faecium enhanced the serum superoxide dismutase (SOD) activity and decreased the malondialdehyde (MDA) contents (p < 0.05). The results also confirmed that Enterococcus faecium increased the levels of serum immunoglobulin A (IgA), immunoglobulin G (IgG), and the concentrations of secretory immunoglobulin A (SIgA) in the jejunal mucosa while decreasing the interleukin-8 (IL-8) and interleukin-1β (IL-1β) levels in the jejunal mucosa (p < 0.05). Intestinal microbiota analysis revealed that Enterococcus faecium increased the species numbers at the OUT level. Compared with the control, Enterococcus faecium had significant effects on the relative abundance of Paraclostridium, Brevinema, and Comamonas (p < 0.05). The results showed that Enterococcus faecium could improve the growth performance, increase the antioxidant capacity, improve the immunity of growing male minks, and also modulate the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lihua Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (L.C.); (F.S.); (Q.R.); (Z.J.); (J.C.); (Y.L.)
| |
Collapse
|
4
|
Cao L, Sun F, Ren Q, Jiang Z, Chen J, Li Y, Wang L. Effects of dietary supplementation of Enterococcus faecium postbiotics on growth performance and intestinal health of growing male mink. Front Vet Sci 2024; 11:1409127. [PMID: 39051012 PMCID: PMC11266192 DOI: 10.3389/fvets.2024.1409127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Recent studies have demonstrated that postbiotics possess bioactivities comparable to those of probiotics. Therefore, our experiment aimed to evaluate the effects of postbiotics derived from Enterococcus faecium on the growth performance and intestinal health of growing male minks. A total of 120 growing male minks were randomly assigned to 4 groups, each with 15 replicates of 2 minks. The minks in the 4 groups were fed a basal diet supplemented with 0 (control), 0.05, 0.1, and 0.15% postbiotics derived from E. faecium (PEF), respectively. Compared to the control, PEF improved feed/gain (F/G) during the first 4 weeks and the entire 8 weeks of the study (p < 0.05); in addition, 0.1% PEF improved average daily gain (ADG) during the first 4 weeks and the entire 8 weeks of the study (p < 0.05), while 0.15% PEF improved ADG during the first 4 weeks of the study (p < 0.05). Consequently, 0.1% PEF minks displayed greater body weight (BW) at weeks 4 and 8 (p < 0.05), and 0.15% PEF minks had greater BW at week 4 (p < 0.05) than minks in the control. Furthermore, compared to the control, both 0.05 and 0.1% PEF enhanced the apparent digestibility of crude protein (CP) and ether extract (EE) (p < 0.05) in the initial 4 weeks, while both 0.1 and 0.15% PEF enhanced the apparent digestibility of CP and DM in the final 4 weeks (p < 0.05). Additionally, trypsin activity was elevated in the 0.1 and 0.15% PEF groups compared to the control (p < 0.05). In terms of intestinal morphology, PEF increased the villus height and villus/crypt (V/C) in the jejunum (p < 0.05), and both 0.1 and 0.15% PEF decreased the crypt depth and increased the villus height and V/C in the duodenum (p < 0.05) compared to the control group. Supplementation with 0.1% PEF increased the SIgA levels but decreased the IL-2, IL-8, and TNF-α levels in the jejunum (p < 0.05). Compared to the control, E. faecium postbiotics decreased the relative abundances of Serratia and Fusobacterium (p < 0.05). In conclusion, the results indicate that the growth performance, digestibility, immunity, and intestine development of minks are considerably affected by E. faecium postbiotics. In particular, dietary supplementation with 0.1% E. faecium postbiotics provides greater benefits than supplementation with 0.05 and 0.15%.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lihua Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
A microbial tale of farming, invasion and conservation: on the gut bacteria of European and American mink in Western Europe. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Iatrou AM, Michailidou S, Papadopoulos GA, Afaloniati H, Lagou MK, Kiritsi M, Argiriou A, Angelopoulou K, Poutahidis T, Fortomaris P. Effects of Dietary Supplementation of Spirulina platensis on the Immune System, Intestinal Bacterial Microbiome and Skin Traits of Mink. Animals (Basel) 2023; 13:ani13020190. [PMID: 36670730 PMCID: PMC9854837 DOI: 10.3390/ani13020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
The impact of dietary inclusion of Spirulina platensis on the immune system, intestinal microbiome and skin of mink was investigated. Forty-eight animals were equally separated into four groups. Groups B and D were control animals, while groups A and C had their feed supplemented daily with 100 mg/kg of body weight Spirulina. Mink in groups A and B were descended from dams supplemented with spirulina during their reproductive period, while those in groups C and D were descended from dams fed the control diets. Fur growth rate and quality were graded semi-quantitatively. Fecal microbiome analysis, skin thickness histomorphometry, immunohistochemical labeling and counts of immune cells in the colon, mesenteric lymph nodes and spleen and quantitative gene expression analysis of cytokines in the colon were performed. Skin thickness, fur growth rate and skin quality were similar among groups (p > 0.05). However, differences were observed among groups concerning the relative and differential abundance of bacterial species. Tgf-β expression was lower in group A, whereas IL-β1 was lower in group C compared to group B (p < 0.05). Group D had significantly lower numbers of inflammatory cells in the colon and mesenteric lymph nodes. The results revealed that Spirulina decreased indices of subclinical inflammation in mink gut, while differences in the bacterial communities among groups were observed.
Collapse
Affiliation(s)
- Anna Maria Iatrou
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2310999958
| | - Sofia Michailidou
- Center for Research and Technology, Hellas Institute of Applied Biosciences, Thermi, 57001 Thessaloniki, Greece
| | - Georgios A. Papadopoulos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Hara Afaloniati
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria K. Lagou
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Kiritsi
- Center for Research and Technology, Hellas Institute of Applied Biosciences, Thermi, 57001 Thessaloniki, Greece
| | - Anagnostis Argiriou
- Center for Research and Technology, Hellas Institute of Applied Biosciences, Thermi, 57001 Thessaloniki, Greece
- Department of Food Science and Nutrition, University of the Aegean, 81400 Lemnos, Greece
| | - Katerina Angelopoulou
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Fortomaris
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
7
|
Mousavi SN, Rayyani E, Heshmati J, Tavasolian R, Rahimlou M. Effects of Ramadan and Non-ramadan Intermittent Fasting on Gut Microbiome. Front Nutr 2022; 9:860575. [PMID: 35392284 PMCID: PMC8980861 DOI: 10.3389/fnut.2022.860575] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In recent years, intermittent fasting (IF) has gained popularity in the health and wellness in the world. There are numerous types of IF, all of which involve fasting periods that last longer than an overnight fast and involve limited meal time-windows, with or without calorie restriction. The objective of this review is to summarize the current evidence for the effects of Ramadan and non-Ramadan IF on gut microbiome. METHODS We explored PubMed, Scopus, Web of Science, and Google Scholar according to the PRISMA criteria (Preferred Reporting Items for Systematic Reviews and Meta-Analysis). Animal and human studies were screened and reviewed separately by two researchers. RESULTS Twenty-eight studies were selected after screening. Some of the studies were performed on animal models and some on humans. The results of these studies indicate a significant shift in the gut microbiota, especially an increase in the abundance of Lactobacillus and Bifidobacteria following fasting diets. The results of some studies also showed an increase in the bacterial diversity, decrease inflammation and increased production of some metabolites such as short-chain fatty acids (SCFAs) in individuals or samples under fasting diets. Moreover, Ramadan fasting, as a kind of IF, improves health parameters through positive effects on some bacterial strains such as Akkermansia muciniphila and Bacteroide. However, some studies have reported adverse effects of fasting diets on the structure of the microbiome. CONCLUSION In general, most studies have seen favorable results following adherence from the fasting diets on the intestinal microbiome. However, because more studies have been done on animal models, more human studies are needed to prove the results.
Collapse
Affiliation(s)
- Seyedeh Neda Mousavi
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Rayyani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Javad Heshmati
- Songhor Healthcare Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ronia Tavasolian
- Faculty of Clinical Science and Nutrition, University of Chester, Chester, United Kingdom
| | - Mehran Rahimlou
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
8
|
Effect of Vitamin A Supplementation on Growth Performance, Serum Biochemical Parameters, Intestinal Immunity Response and Gut Microbiota in American Mink ( Neovison vison). Animals (Basel) 2021; 11:ani11061577. [PMID: 34071204 PMCID: PMC8229402 DOI: 10.3390/ani11061577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Vitamin A is critical throughout life, but utilization of vitamin A often results in local and systemic toxicity. This study investigated the effect of vitamin A supplementation on mink growth and health. The results show that vitamin A deficiency decreased the ADG, villus height, villus height/crypt depth ratio and mRNA expression levels of IL-22, Occludin and ZO-1. Vitamin A supplementation increased the diversity of jejunum bacteria, decreased the ratio of Firmicutes to Bacteroidetes and increased the relative abundance of Akkermansia and Lachnospiraceae NK4A136 group. Abstract This experiment investigated the effect of vitamin A supplementation on growth, serum biochemical parameters, jejunum morphology and the microbial community in male growing-furring mink. Thirty healthy male mink were randomly assigned to three treatment groups, with 10 mink per group. Each mink was housed in an individual cage. The mink in the three groups were fed diets supplemented with vitamin A acetate at dosages of 0 (CON), 20,000 (LVitA) and 1,280,000 IU/kg (HVitA) of basal diet. A 7-day pretest period preceded a formal test period of 45 days. The results show that 20,000 IU/kg vitamin A increased the ADG, serum T-AOC and GSH-Px activities, villus height and villus height/crypt depth ratio (p < 0.05). The mRNA expression levels of IL-22, Occludin and ZO-1 in the jejunum of mink were significantly higher in the LVitA group than those in the CON and HVitA groups (p < 0.05). Vitamin A supplementation increased the diversity of jejunum bacteria, decreased the ratio of Firmicutes to Bacteroidetes and increased the relative abundance of Akkermansia, uncultured bacterium f Muribaculaceae, Allobaculum, Lachnospiraceae NK4A136 group, Rummeliibacillus and Parasutterella. The comparison of potential functions also showed enrichment of glycan biosynthesis and metabolism, transport and catabolism pathways in the vitamin A supplementation groups compared with the CON group. In conclusion, these results indicate that dietary vitamin A supplementation could mediate host growth by improving intestinal development, immunity and the relative abundance of the intestinal microbiota.
Collapse
|
9
|
Wlazło Ł, Nowakowicz-Dębek B, Czech A, Chmielowiec-Korzeniowska A, Ossowski M, Kułażyński M, Łukaszewicz M, Krasowska A. Fermented Rapeseed Meal as a Component of the Mink Diet ( Neovison vison) Modulating the Gastrointestinal Tract Microbiota. Animals (Basel) 2021; 11:ani11051337. [PMID: 34066725 PMCID: PMC8150280 DOI: 10.3390/ani11051337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Fermented rapeseed meal (FRSM) was used in the diet of American mink (Neovison vison). An advantage of this product is its prebiotic and functional properties, which can modify the bacterial microbiota of the GIT. A control group and three experimental groups were formed, with 60 animals in each group. The control group received a basal diet and the experimental groups received a diet with a 2%, 4% or 6% of FRSM as a replacement of extruded wheat. Bacillus subtilis strain 87Y was used to ferment the rapeseed meal (RSM). The study was conducted on mink from the age of 16-17 weeks until slaughter. Changes in the microbiota were analysed in samples of the animals' faeces and intestinal contents. The analyses included determination of the total number of bacteria and fungi, the number of coliforms and Escherichia coli, the total number of anaerobic Clostridium perfringens, and the presence of Salmonella spp. In animals receiving 4% and 6% FRSM (groups II and III), the content of microscopic fungi and the number of C. perfringens bacteria was significantly (p ≤ 0.05) lower than in the animals from the control group (group 0). A decrease in E. coli was observed in all experimental groups (I, II and III), although these differences were not statistically significant. The inclusion of FRSM in the feed ration did not affect the number of lactic acid intestinal bacteria. Analysis of the results obtained from the stool samples showed that the inclusion of FRSM in the ration did not significantly affect the number of microorganisms in each group. However, as in the case of the intestinal contents, in these samples there was a decrease in the total number of C. perfringens in the experimental groups (I, II and III), with a simultaneous increase in the number of mesophilic bacteria in relation to the control. There was no detection of Salmonella bacteria in any of the analysed material.
Collapse
Affiliation(s)
- Łukasz Wlazło
- Department of Animal Hygiene and Environmental Hazards, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (Ł.W.); (A.C.-K.)
| | - Bożena Nowakowicz-Dębek
- Department of Animal Hygiene and Environmental Hazards, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (Ł.W.); (A.C.-K.)
- Correspondence: (B.N.-D.); (M.O.); Tel.: +48-81-445-69-98 (B.N.-D.); +48-81-445-69-85 (M.O.)
| | - Anna Czech
- Department of Biochemistry and Toxicology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Anna Chmielowiec-Korzeniowska
- Department of Animal Hygiene and Environmental Hazards, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (Ł.W.); (A.C.-K.)
| | - Mateusz Ossowski
- Department of Animal Hygiene and Environmental Hazards, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (Ł.W.); (A.C.-K.)
- Correspondence: (B.N.-D.); (M.O.); Tel.: +48-81-445-69-98 (B.N.-D.); +48-81-445-69-85 (M.O.)
| | - Marek Kułażyński
- Department of Fuel Chemistry and Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344 Wrocław, Poland;
- InventionBio, Wojska Polskiego 65, 85-825 Bydgoszcz, Poland; (M.Ł.); (A.K.)
| | - Marcin Łukaszewicz
- InventionBio, Wojska Polskiego 65, 85-825 Bydgoszcz, Poland; (M.Ł.); (A.K.)
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wrocław, Poland
| | - Anna Krasowska
- InventionBio, Wojska Polskiego 65, 85-825 Bydgoszcz, Poland; (M.Ł.); (A.K.)
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wrocław, Poland
| |
Collapse
|
10
|
Guo G, Eccles KM, McMillan M, Thomas PJ, Chan HM, Poulain AJ. The Gut Microbial Community Structure of the North American River Otter (Lontra canadensis) in the Alberta Oil Sands Region in Canada: Relationship with Local Environmental Variables and Metal Body Burden. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2516-2526. [PMID: 32946150 DOI: 10.1002/etc.4876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/23/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The Alberta Oil Sands Region in Canada is home to one of the largest oil bitumen deposits in the world. The North American river otter (Lontra canadensis) is a top predator with a small home range and is sensitive to disturbances; it has been designated as a sentinel species for the potential impacts of the natural resource exploitation on freshwater ecosystems in the Alberta Oil Sands Region. With an increasing interest in noninvasive biomarkers, recent studies suggest that gut microbiota can be used as a potential biomarker of early biological effects on aquatic wildlife. The goal of the present study was to determine the river otter gut microbial structure related to environmental variables characterizing mining activities and metal body burden. We obtained 18 trapped animals from and surrounding the surface mineable area of the Alberta Oil Sands Region. The gut microbial community structure was characterized using high-throughput sequencing of 16S rRNA gene amplicon analyses. Trace metal concentrations in the liver were measured by inductively coupled plasma-mass spectrometry. Our study revealed that the gut bacteria of river otters in the Alberta Oil Sands Region clustered in 4 groups dominated by Peptostreptococcaceae, Carnobacteriaceae, Enterobacteriaceae, Clostridiaceae, and Nostocaceae. We show that arsenic, barium, rubidium, liver-body weight ratio, and δ15 N were associated with each cluster. When comparing affected versus less affected sites, we show that river otter gut bacterial community and structure are significantly related to trophic level of the river otter but not to Alberta Oil Sands Region mining activities. Our study reveals that the gut bacterial dynamics can provide insights into the diet and habitat use of river otters but that more work is needed to use it as a pollution biomarker. Environ Toxicol Chem 2020;39:2516-2526. © 2020 SETAC.
Collapse
Affiliation(s)
- Galen Guo
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristin M Eccles
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Morgan McMillan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Philippe J Thomas
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Center, Ottawa, Ontario, Canada
| | - Hing Man Chan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
11
|
The microbiota of farmed mink (Neovison vison) follows a successional development and is affected by early life antibiotic exposure. Sci Rep 2020; 10:20434. [PMID: 33235332 PMCID: PMC7686315 DOI: 10.1038/s41598-020-77417-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/11/2020] [Indexed: 01/04/2023] Open
Abstract
On many mink farms, antibiotics are used extensively during the lactation period to reduce the prevalence and severity of pre-weaning diarrhoea (PWD) in mink kits (also referred to as greasy kit syndrome). Concerns have been raised, that routine treatment of PWD with antibiotics could affect the natural successional development of the gut microbiota, which may have long lasting consequences. Here we investigated the effects of early life antibiotic treatment administered for 1 week (postnatal days 13–20). Two routes of antibiotic administration were compared to a non-treated control group (CTR, n = 24). Routes of administration included indirect treatment, through the milk from dams receiving antibiotics by intramuscular administration (ABX_D, n = 24) and direct treatment by intramuscular administration to the kits (ABX_K, n = 24). A tendency for slightly increased weight at termination (Day 205) was observed in the ABX_K group. The gut microbiota composition was profiled by 16S rRNA gene sequencing at eight time points between Day 7 and Day 205. A clear successional development of the gut microbiota composition was observed and both treatment regimens caused detectable changes in the gut microbiota until at least eight days after treatment ceased. At termination, a significant positive correlation was identified between microbial diversity and animal weight.
Collapse
|
12
|
Birch JM, Agger JF, Leijon M, Ullman K, Struve T, Jensen HE. Comparing the treatment effect of narrow spectrum antimicrobial, probiotic and fluid with amoxicillin in mink kits (Neovison vison) with pre-weaning diarrhea. Res Vet Sci 2019; 125:121-129. [PMID: 31207535 DOI: 10.1016/j.rvsc.2019.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/30/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023]
Abstract
Pre-weaning diarrhea in mink kits (PWD), also known as "sticky kits" is a multifactorial syndrome of considerable concern in the mink production. Evidence based treatment protocols are not available, and treatment is therefore empirical and often based on the use of antimicrobials. The purpose of the study was to test the effect of 3 alternative treatments to a standard antibiotic treatment, to characterize the study groups microbiologically, and finally to compare the intestinal microbiota of the different treatment groups at the age of 42 days. In total, 226 one to three week old mink kits with PWD from 36 litters were treated with either 1) Lactobacillus reuteri, 2) benzylpenicillin, 3) Ringer lactate or 4) amoxicillin (controls). Effects of the treatments were measured as weight gain from day 0 to day 15 and mortality. Multivariable linear mixed model regression showed no significant difference in weight gain between probiotic-, penicillin or fluid-treated mink kits and the amoxicillin treated controls. There was also no significant difference in mortality risk between the treatment groups. Bacterial culture and next generation sequencing of the viral contents showed that the study groups were uniform with a high frequency of Staphylococcus intermedius group (SIG) bacteria, Escherichia coli, Enterococcus hirae, Mamastrovirus and Sapovirus which were representative for mink kits with PWD. 16S sequencing results of the bacterial microbiota, when the kits were 42 days old were dominated by clostridia in all groups and showed no clear differences in the bacterial composition between the different treatment groups.
Collapse
Affiliation(s)
- Julie Melsted Birch
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Jens Frederik Agger
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mikael Leijon
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Karin Ullman
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Tina Struve
- Kopenhagen Fur Diagnostics, Kopenhagen Fur, Glostrup, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
13
|
Compo NR, Gomez DE, Tapscott B, Weese JS, Turner PV. Fecal bacterial microbiota of Canadian commercial mink (Neovison vison): Yearly, life stage, and seasonal comparisons. PLoS One 2018; 13:e0207111. [PMID: 30419047 PMCID: PMC6231641 DOI: 10.1371/journal.pone.0207111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/25/2018] [Indexed: 01/01/2023] Open
Abstract
The gastrointestinal microbiome is known to play a critical role in animal health but has been relatively poorly characterized in commercial mink, an obligate carnivore. Whether the microbiota can be manipulated in mink to improve pelt quality, health, and well-being is unknown. The objectives of this study were to characterize the fecal microbiota of commercial mink, and to evaluate potential changes due to year (2014 vs 2015), life stage (adult female vs weaned kit), season (summer vs winter), and between Canadian farms. Pooled fecal samples were collected from adult females and weaned kits in the summers of 2014 (n = 173) and 2015 (n = 168), and from females in the winter of 2016 (n = 39), a time when females undergo marked calorie restriction, from 49 mink farms in Ontario. Bacterial DNA was extracted and the V4 region of the 16S rRNA gene was amplified. Approximately 22 million sequences were identified following quality control filtering. A total of 31 bacterial phyla were identified; however, only 3 comprised >1% of the total sequences identified, with Firmicutes and Proteobacteria together comprising 95% of the total sequences. Comparisons were made by life stage, season and year; no differences were found in the relative abundance of any taxa between samples collected from adult females and weaned kits from the same year and the greatest number of differences at each taxonomic level were noted between 2014 and 2015. Significantly more operational taxonomic units (OTUs) were found in 2014 than 2015 or 2016 (p<0.05) and samples from 2014 were more even, but less diverse than in 2015 (p = 0.002 and 0.001, respectively). There were significant differences in community population and structure by year and season (all p-values <0.001). The predominant phyla and genera at the farm level were similar from year to year. Together, these indicate that mink environment, season, and time are important factors in the stability of gastrointestinal microbiota, once mink reach maturity.
Collapse
Affiliation(s)
- Nicole R. Compo
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Diego E. Gomez
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Brian Tapscott
- Ontario Ministry of Agriculture, Food, and Rural Affairs, Elora, Ontario, Canada
| | - J. Scott Weese
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Patricia V. Turner
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Birch JM, Ullman K, Struve T, Agger JF, Hammer AS, Leijon M, Jensen HE. Investigation of the viral and bacterial microbiota in intestinal samples from mink (Neovison vison) with pre-weaning diarrhea syndrome using next generation sequencing. PLoS One 2018; 13:e0205890. [PMID: 30335814 PMCID: PMC6193705 DOI: 10.1371/journal.pone.0205890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023] Open
Abstract
Pre-weaning diarrhea (PWD) in mink kits is a common multifactorial syndrome on commercial mink farms. Several potential pathogens such as astroviruses, caliciviruses, Escherichia coli and Staphylococcus delphini have been studied, but the etiology of the syndrome seems complex. In pooled samples from 38 diarrheic and 42 non-diarrheic litters, each comprising of intestinal contents from 2-3 mink kits from the same litter, the bacterial populations were studied using Illumina Next Generation Sequencing technology and targeted 16S amplicon sequencing. In addition, we used deep sequencing to determine and compare the viral intestinal content in 31 healthy non-diarrheic and 30 diarrheic pooled samples (2-3 mink kits from the same litter per pool). The results showed high variations in composition of the bacterial species between the pools. Enterococci, staphylococci and streptococci dominated in both diarrheic and non-diarrheic pools. However, enterococci accounted for 70% of the reads in the diarrheic group compared to 50% in the non-diarrheic group and this increase was at the expense of staphylococci and streptococci which together accounted for 45% and 17% of the reads in the non-diarrheic and diarrheic group, respectively. Moreover, in the diarrheic pools there were more reads assigned to Clostridia, Escherichia-Shigella and Enterobacter compared to the non-diarrheic pools. The taxonomically categorized sequences from the virome showed that the most prevalent viruses in all pools were caliciviruses and mamastroviruses (almost exclusively type 10). However, the numbers of reads assigned to caliciviruses were almost 3 times higher in the diarrheic pools compared the non-diarrheic pools and Sapporo-like caliciviruses were more abundant than the Norwalk-like caliciviruses. The results from this study have contributed to the insight into the changes in the intestinal microbiota associated with the PWD syndrome of mink.
Collapse
Affiliation(s)
- Julie Melsted Birch
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Karin Ullman
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Tina Struve
- Kopenhagen Fur Diagnostics, Kopenhagen Fur, Glostrup, Denmark
| | - Jens Frederik Agger
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Anne Sofie Hammer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Mikael Leijon
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Henrik Elvang Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
15
|
Mink (Mustela vison) Gut Microbial Communities from Northeast China and Its Internal Relationship with Gender and Food Additives. Curr Microbiol 2017; 74:1169-1177. [DOI: 10.1007/s00284-017-1301-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/05/2017] [Indexed: 01/26/2023]
|
16
|
Bahl MI, Hammer AS, Clausen T, Jakobsen A, Skov S, Andresen L. The gastrointestinal tract of farmed mink (Neovison vison) maintains a diverse mucosa-associated microbiota following a 3-day fasting period. Microbiologyopen 2017; 6. [PMID: 28093882 PMCID: PMC5458460 DOI: 10.1002/mbo3.434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/19/2016] [Accepted: 11/24/2016] [Indexed: 11/09/2022] Open
Abstract
Although it is well documented that the gut microbiota plays an important role in health and disease in mammalian species, this area has been poorly studied among carnivorous animals, especially within the mustelidae family. The gastrointestinal tract of carnivores is characterized by its short length and fast transit time, as compared to omnivores and herbivores, which is due to the low level of inherent fermentation. Mink represents an example of this, which have a GI tract only four times the length of the body and a transit time of approximately 4-5 hr. In this study, we used high-throughput 16S rRNA gene sequencing to explore the resident gut microbiota of the mink in terms of intra-and interindividual diversity. We report, for the first time, that the mucosa-associated bacterial community within the colon is diverse and dissimilar from the community found in the feed. We found large interindividual differences in bacterial composition between individual animals being dominated generally by the phylum Firmicutes, but in some cases also Proteobacteria or Fusobacteria. The bacterial load and community structure within the mucus was not severely impacted by 3 days of fasting, which implies that a resident and stable microbiota is hosted by these animals.
Collapse
Affiliation(s)
- Martin I Bahl
- Division of Diet, Disease prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Anne S Hammer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Tove Clausen
- Danish Fur Breeders Research Centre, Holstebro, Denmark
| | - Anabelle Jakobsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Søren Skov
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lars Andresen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|