1
|
Perkins SW, Hlaing MZ, Hicks KA, Rajakovich LJ, Snider MJ. Mechanism of the Multistep Catalytic Cycle of 6-Hydroxynicotinate 3-Monooxygenase Revealed by Global Kinetic Analysis. Biochemistry 2023; 62:1553-1567. [PMID: 37130364 DOI: 10.1021/acs.biochem.2c00514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The class A flavoenzyme 6-hydroxynicotinate 3-monooxygenase (NicC) catalyzes a rare decarboxylative hydroxylation reaction in the degradation of nicotinate by aerobic bacteria. While the structure and critical residues involved in catalysis have been reported, the mechanism of this multistep enzyme has yet to be determined. A kinetic understanding of the NicC mechanism would enable comparison to other phenolic hydroxylases and illuminate its bioengineering potential for remediation of N-heterocyclic aromatic compounds. Toward these goals, transient state kinetic analyses by stopped-flow spectrophotometry were utilized to follow rapid changes in flavoenzyme absorbance spectra during all three stages of NicC catalysis: (1) 6-HNA binding; (2) NADH binding and FAD reduction; and (3) O2 binding with C4a-adduct formation, substrate hydroxylation, and FAD regeneration. Global kinetic simulations by numeric integration were used to supplement analytical fitting of time-resolved data and establish a kinetic mechanism. Results indicate that 6-HNA binding is a two-step process that substantially increases the affinity of NicC for NADH and enables the formation of a charge-transfer-complex intermediate to enhance the rate of flavin reduction. Singular value decomposition of the time-resolved spectra during the reaction of the substrate-bound, reduced enzyme with dioxygen provides evidence for the involvement of C4a-hydroperoxy-flavin and C4a-hydroxy-flavin intermediates in NicC catalysis. Global analysis of the full kinetic mechanism suggests that steady-state catalytic turnover is partially limited by substrate hydroxylation and C4a-hydroxy-flavin dehydration to regenerate the flavoenzyme. Insights gleaned from the kinetic model and determined microscopic rate constants provide a fundamental basis for understanding NicC's substrate specificity and reactivity.
Collapse
Affiliation(s)
- Scott W Perkins
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| | - May Z Hlaing
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| | - Katherine A Hicks
- Department of Chemistry, The State University of New York College at Cortland, Cortland, New York 13045, United States
| | - Lauren J Rajakovich
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mark J Snider
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| |
Collapse
|
2
|
King E, Maxel S, Li H. Engineering natural and noncanonical nicotinamide cofactor-dependent enzymes: design principles and technology development. Curr Opin Biotechnol 2020; 66:217-226. [PMID: 32956903 PMCID: PMC7744333 DOI: 10.1016/j.copbio.2020.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/20/2022]
Abstract
Nicotinamide cofactors enable oxidoreductases to catalyze a myriad of important reactions in biomanufacturing. Decades of research has focused on optimizing enzymes which utilize natural nicotinamide cofactors, namely nicotinamide adenine dinucleotide (phosphate) (NAD(P)+). Recent findings reignite the interest in engineering enzymes to utilize noncanonical cofactors, the mimetics of NAD+ (mNADs), which exhibit superior industrial properties in vitro and enable specific electron delivery in vivo. We compare recent advances in engineering natural versus noncanonical cofactor-utilizing enzymes, discuss design principles discovered, and survey emerging high-throughput platforms beyond the traditional 96-well plate-based methods. Obtaining mNAD-dependent enzymes remains challenging with a limited toolkit. To this end, we highlight design principles and technologies which can potentially be translated from engineering natural to noncanonical cofactor-dependent enzymes.
Collapse
Affiliation(s)
- Edward King
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Sarah Maxel
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
3
|
A Rapid Method for the Selection of Amidohydrolases from Metagenomic Libraries by Applying Synthetic Nucleosides and a Uridine Auxotrophic Host. Catalysts 2020. [DOI: 10.3390/catal10040445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the development of a rapid, high-throughput method for the selection of amide-hydrolysing enzymes from the metagenome is described. This method is based on uridine auxotrophic Escherichia coli strain DH10B ∆pyrFEC and the use of N4-benzoyl-2’-deoxycytidine as a sole source of uridine in the minimal microbial M9 medium. The approach described here permits the selection of unique biocatalysts, e.g., a novel amidohydrolase from the activating signal cointegrator homology (ASCH) family and a polyethylene terephthalate hydrolase (PETase)-related enzyme.
Collapse
|
4
|
Časaitė V, Sadauskas M, Vaitekūnas J, Gasparavičiūtė R, Meškienė R, Skikaitė I, Sakalauskas M, Jakubovska J, Tauraitė D, Meškys R. Engineering of a chromogenic enzyme screening system based on an auxiliary indole-3-carboxylic acid monooxygenase. Microbiologyopen 2019; 8:e00795. [PMID: 30666828 PMCID: PMC6692525 DOI: 10.1002/mbo3.795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/24/2022] Open
Abstract
Here, we present a proof‐of‐principle for a new high‐throughput functional screening of metagenomic libraries for the selection of enzymes with different activities, predetermined by the substrate being used. By this approach, a total of 21 enzyme‐coding genes were selected, including members of xanthine dehydrogenase, aldehyde dehydrogenase (ALDH), and amidohydrolase families. The screening system is based on a pro‐chromogenic substrate, which is transformed by the target enzyme to indole‐3‐carboxylic acid. The later compound is converted to indoxyl by a newly identified indole‐3‐carboxylate monooxygenase (Icm). Due to the spontaneous oxidation of indoxyl to indigo, the target enzyme‐producing colonies turn blue. Two types of pro‐chromogenic substrates have been tested. Indole‐3‐carboxaldehydes and the amides of indole‐3‐carboxylic acid have been applied as substrates for screening of the ALDHs and amidohydrolases, respectively. Both plate assays described here are rapid, convenient, easy to perform, and adaptable for the screening of a large number of samples both in Escherichia coli and Rhodococcus sp. In addition, the fine‐tuning of the pro‐chromogenic substrate allows screening enzymes with the desired substrate specificity.
Collapse
Affiliation(s)
- Vida Časaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mikas Sadauskas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Renata Gasparavičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rita Meškienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Izabelė Skikaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mantas Sakalauskas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jevgenija Jakubovska
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daiva Tauraitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|