1
|
Du C, Liao Y, Ding C, Huang J, Zhou S, Xu Y, Yang Z, Shi X, Li Y, Jiang M, Zuo L, Li M, Bian S, Xiao N, Li L, Xu Y, Hu Q, Li Q. Molecular serotyping of diarrheagenic Escherichia coli with a MeltArray assay reveals distinct correlation between serotype and pathotype. Gut Microbes 2024; 16:2401944. [PMID: 39292565 PMCID: PMC11529414 DOI: 10.1080/19490976.2024.2401944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/13/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
Diarrheagenic Escherichia coli serotypes are associated with various clinical syndromes, yet the precise correlation between serotype and pathotype remains unclear. A major barrier to such studies is the reliance on antisera-based serotyping, which is culture-dependent, low-throughput, and cost-ineffective. We have established a highly multiplex PCR-based serotyping assay, termed the MeltArray E. coli serotyping (EST) assay, capable of identifying 163 O-antigen-encoding genes and 53 H-antigen-encoding genes of E. coli. The assay successfully identified serotypes directly from both simulated and real fecal samples, as demonstrated through spike-in validation experiments and a retrospective study. In a multi-province study involving 637 E. coli strains, it revealed that the five major diarrheagenic pathotypes have distinct serotype compositions. Notably, it differentiated 257 Shigella isolates into four major Shigella species, distinguishing them from enteroinvasive E. coli based on their distinct serotype profiles. The assay's universality was further corroborated by in silico analysis of whole-genome sequences from the EnteroBase. We conclude that the MeltArray EST assay represents a paradigm-shifting tool for molecular serotyping of E. coli, with potential routine applications for comprehensive serotype analysis, disease diagnosis, and outbreak detection.
Collapse
Affiliation(s)
- Chen Du
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
- Microbiology Lab Office, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yiqun Liao
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Congcong Ding
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Jiayu Huang
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Shujuan Zhou
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Yiyan Xu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Zhaohui Yang
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Xiaolu Shi
- Microbiology Lab Office, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinghui Li
- Microbiology Lab Office, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Min Jiang
- Microbiology Lab Office, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Le Zuo
- Microbiology Lab Office, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Minxu Li
- Microbiology Lab Office, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | | | - Na Xiao
- Laboratory Department, Yantian District Center for Disease Control and Prevention, Shenzhen, China
| | - Liqiang Li
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Ye Xu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Qinghua Hu
- Microbiology Lab Office, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qingge Li
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Halimeh FB, Rafei R, Osman M, Kassem II, Diene SM, Dabboussi F, Rolain JM, Hamze M. Historical, current, and emerging tools for identification and serotyping of Shigella. Braz J Microbiol 2021; 52:2043-2055. [PMID: 34524650 PMCID: PMC8441030 DOI: 10.1007/s42770-021-00573-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
The Shigella genus includes serious foodborne disease etiologic agents, with 4 species and 54 serotypes. Identification at species and serotype levels is a crucial task in microbiological laboratories. Nevertheless, the genetic similarity between Shigella spp. and Escherichia coli challenges the correct identification and serotyping of Shigella spp., with subsequent negative repercussions on surveillance, epidemiological investigations, and selection of appropriate treatments. For this purpose, multiple techniques have been developed historically ranging from phenotype-based methods and single or multilocus molecular techniques to whole-genome sequencing (WGS). To facilitate the selection of the most relevant method, we herein provide a global overview of historical and emerging identification and serotyping techniques with a particular focus on the WGS-based approaches. This review highlights the excellent discriminatory power of WGS to more accurately elucidate the epidemiology of Shigella spp., disclose novel promising genomic targets for surveillance methods, and validate previous well-established methods.
Collapse
Affiliation(s)
- Fatima Bachir Halimeh
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine Et de Pharmacie, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14850, USA
| | - Issmat I Kassem
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223-1797, USA
| | - Seydina M Diene
- Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine Et de Pharmacie, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Jean-Marc Rolain
- Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine Et de Pharmacie, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| |
Collapse
|
3
|
Phylogenomic Investigation of Increasing Fluoroquinolone Resistance among Belgian Cases of Shigellosis between 2013 and 2018 Indicates Both Travel-Related Imports and Domestic Circulation. Microorganisms 2021; 9:microorganisms9040767. [PMID: 33917583 PMCID: PMC8067512 DOI: 10.3390/microorganisms9040767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/30/2022] Open
Abstract
Shigellosis is an acute enteric infection caused mainly by the species Shigella flexneri and Shigella sonnei. Since surveillance of these pathogens indicated an increase in ciprofloxacin-resistant samples collected in Belgium between 2013 and 2018, a subset of 148 samples was analyzed with whole genome sequencing (WGS) to investigate their dispersion and underlying genomic features associated with ciprofloxacin resistance. A comparison between observed phenotypes and WGS-based resistance prediction to ciprofloxacin revealed perfect correspondence for all samples. Core genome multi-locus sequence typing and single nucleotide polymorphism-typing were used for phylogenomic investigation to characterize the spread of these infections within Belgium, supplemented with data from international reference collections to place the Belgian isolates within their global context. For S. flexneri, substantial diversity was observed with ciprofloxacin-resistant isolates assigned to several phylogenetic groups. Besides travel-related imports, several clusters of highly similar Belgian isolates could not be linked directly to international travel suggesting the presence of domestically circulating strains. For S. sonnei, Belgian isolates were all limited to lineage III, and could often be traced back to travel to countries in Asia and Africa, sometimes followed by domestic circulation. For both species, several clusters of isolates obtained exclusively from male patients were observed. Additionally, we illustrated the limitations of conventional serotyping of S. flexneri, which was impacted by serotype switching. This study contributes to a better understanding of the spread of shigellosis within Belgium and internationally, and highlights the added value of WGS for the surveillance of this pathogen.
Collapse
|
4
|
Outbreak of Central American born Shigella sonnei in two youth camps in Belgium in the summer of 2019. Eur J Clin Microbiol Infect Dis 2021; 40:1573-1577. [PMID: 33569724 PMCID: PMC8205880 DOI: 10.1007/s10096-021-04164-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/13/2021] [Indexed: 10/26/2022]
Abstract
In 2019, an outbreak of Shigella sonnei occurred during two youth camps in Belgium. The clustering of isolates from both camps was confirmed by next-generation sequencing, as well as a secondary infection of a technician. The outbreak strain clustered with internationally isolated strains from patients with recent travel history to Central America. This report exemplifies enhanced surveillance and international collaboration between public health institutes by enabling to link local outbreaks to region-specific sublineages circulating abroad.
Collapse
|
5
|
Gand M, Mattheus W, Roosens NHC, Dierick K, Marchal K, De Keersmaecker SCJ, Bertrand S. A multiplex oligonucleotide ligation-PCR method for the genoserotyping of common Salmonella using a liquid bead suspension assay. Food Microbiol 2019; 87:103394. [PMID: 31948635 DOI: 10.1016/j.fm.2019.103394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/21/2019] [Accepted: 11/20/2019] [Indexed: 01/14/2023]
Abstract
Salmonella is a major pathogen having a public health and economic impact in both humans and animals. Six serotypes of the Salmonella genus are mentioned in the Belgian and European regulation as to be rapidly excluded from the food chain (EU regulation N°2160/2003, Belgian royal decree 27/04/2017). The reference method for Salmonella serotyping, including slide-agglutination and biochemical tests, is time-consuming, expensive, not always objective, and therefore does not match the fast identification criteria required by the legislation. In this study, a molecular method, using genetic markers detected by Multiplex Oligonucleotide Ligation - PCR and Luminex technology, was developed for the identification of the 6 Salmonella serotypes and their variants subjected to an official control. The resulting method was validated with the analysis of 971 Salmonella isolated from different matrixes (human, animal, food or environment) and 33 non-Salmonella strains. The results were compared with the reference identifications, achieving an accuracy of 99.7%. The cost-effective high-throughput genoserotyping assay is performed in 1 day and generates objective results, thanks to the automatic interpretation of raw data using a barcode system. In conclusion, it is fully adapted to the implementation in first line laboratories and meets the requirements of the regulation.
Collapse
Affiliation(s)
- Mathieu Gand
- Sciensano, Infectious Diseases in Humans, Bacterial Diseases, B-1180 Brussels, Belgium; Department of Information Technology, IDLab, Imec, Ghent University, B-9052 Ghent, Belgium
| | - Wesley Mattheus
- Sciensano, Infectious Diseases in Humans, Bacterial Diseases, B-1180 Brussels, Belgium.
| | - Nancy H C Roosens
- Sciensano, Transversal Activities in Applied Genomics, B-1050 Brussels, Belgium
| | - Katelijne Dierick
- Sciensano, Infectious Diseases in Humans, Food Pathogen, B-1050 Brussels, Belgium
| | - Kathleen Marchal
- Department of Information Technology, IDLab, Imec, Ghent University, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | | | | |
Collapse
|
6
|
Ventola E, Bogaerts B, De Keersmaecker SCJ, Vanneste K, Roosens NHC, Mattheus W, Ceyssens PJ. Shifting national surveillance of Shigella infections toward geno-serotyping by the development of a tailored Luminex assay and NGS workflow. Microbiologyopen 2019; 8:e00807. [PMID: 30924299 PMCID: PMC6692546 DOI: 10.1002/mbo3.807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/01/2023] Open
Abstract
The phylogenetically closely related Shigella species and enteroinvasive Escherichia coli (EIEC) are responsible for millions of episodes of bacterial dysenteriae worldwide. Given its distinct epidemiology and public health relevance, only Shigellae are subject to mandatory reporting and follow‐up by public health authorities. However, many clinical laboratories struggle to differentiate non‐EIEC, EIEC, and Shigella in their current workflows, leading to inaccuracies in surveillance and rising numbers of misidentified E. coli samples at the National Reference Centre (NRC). In this paper, we describe two novel tools to enhance Shigella surveillance. First, we developed a low‐cost Luminex‐based multiplex assay combining five genetic markers for species identification with 11 markers for serotype prediction for S. sonnei and S. flexneri isolates. Using a test panel of 254 clinical samples, this assay has a sensitivity of 100% in differentiation of EIEC/Shigella pathotype from non‐EIEC strains, and 68.7% success rate in distinction of Shigella and EIEC. A novel, and particularly successful marker was a Shigella‐specific deletion in the spermidine acetyltransferase gene speG, reflecting its metabolic decay. For Shigella serotype prediction, the multiplex assay scored a sensitivity and specificity of 96.6% and 98.4%, respectively. All discrepancies were analyzed with whole‐genome sequencing and shown to be related to causative mutations (stop codons, indels, and promoter mutations) in glycosyltransferase genes. This observation spurred the development of an in silico workflow which extracts the Shigella serotype from Next‐Generation Sequencing (NGS) data, taking into account gene functionality. Both tools will be implemented in the workflow of the NRC, and will play a major role in the shift from phenotypic to genotyping‐based surveillance of shigellosis in Belgium.
Collapse
Affiliation(s)
- Eleonora Ventola
- National Reference Centre of Salmonella and Shigella, Brussels, Belgium.,Department of Biology and Biotechnology "C. Darwin", "Sapienza" Università di Roma, Rome, Italy
| | - Bert Bogaerts
- Transversal activities in Applied Genomics, Brussels, Belgium
| | | | - Kevin Vanneste
- Transversal activities in Applied Genomics, Brussels, Belgium
| | | | - Wesley Mattheus
- National Reference Centre of Salmonella and Shigella, Brussels, Belgium
| | | |
Collapse
|