1
|
Tomkins M, Kliot A, Marée AF, Hogenhout SA. A multi-layered mechanistic modelling approach to understand how effector genes extend beyond phytoplasma to modulate plant hosts, insect vectors and the environment. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:39-48. [PMID: 29547737 DOI: 10.1016/j.pbi.2018.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 05/13/2023]
Abstract
Members of the Candidatus genus Phytoplasma are small bacterial pathogens that hijack their plant hosts via the secretion of virulence proteins (effectors) leading to a fascinating array of plant phenotypes, such as witch's brooms (stem proliferations) and phyllody (retrograde development of flowers into vegetative tissues). Phytoplasma depend on insect vectors for transmission, and interestingly, these insect vectors were found to be (in)directly attracted to plants with these phenotypes. Therefore, phytoplasma effectors appear to reprogram plant development and defence to lure insect vectors, similarly to social engineering malware, which employs tricks to lure people to infected computers and webpages. A multi-layered mechanistic modelling approach will enable a better understanding of how phytoplasma effector-mediated modulations of plant host development and insect vector behaviour contribute to phytoplasma spread, and ultimately to predict the long reach of phytoplasma effector genes.
Collapse
Affiliation(s)
- Melissa Tomkins
- Department of Computational and Systems Biology, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Adi Kliot
- Department of Crop Genetics, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Athanasius Fm Marée
- Department of Computational and Systems Biology, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | - Saskia A Hogenhout
- Department of Crop Genetics, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
2
|
Tamborindeguy C, Huot OB, Ibanez F, Levy J. The influence of bacteria on multitrophic interactions among plants, psyllids, and pathogen. INSECT SCIENCE 2017; 24:961-974. [PMID: 28493539 DOI: 10.1111/1744-7917.12474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 05/10/2023]
Abstract
The recent emergence of several plant diseases caused by psyllid-borne bacterial pathogens worldwide (Candidatus Liberibacter spp.) has created renewed interest on the interaction between psyllids and bacteria. In spite of these efforts to understand psyllid association with bacteria, many aspects of their interactions remain poorly understood. As more organisms are studied, subtleties on the molecular interactions as well as on the effects of the bacteria on the psyllid host are being uncovered. Additionally, psyllid-borne bacterial phytopathogens can also affect the host plant, which in turn can impact psyllid physiology and behavior. Here, we review the current literature on different aspects of the influence of bacteria on multitrophic interactions among plants, psyllids, and pathogens. We then highlight gaps that need to be addressed to advance this field, which can have significant implications for controlling these newly emergent and other plant diseases.
Collapse
Affiliation(s)
| | - Ordom Brian Huot
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Freddy Ibanez
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Julien Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
3
|
Miura C, Komatsu K, Maejima K, Nijo T, Kitazawa Y, Tomomitsu T, Yusa A, Himeno M, Oshima K, Namba S. Functional characterization of the principal sigma factor RpoD of phytoplasmas via an in vitro transcription assay. Sci Rep 2015; 5:11893. [PMID: 26150080 PMCID: PMC4493692 DOI: 10.1038/srep11893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023] Open
Abstract
Phytoplasmas (class, Mollicutes) are insect-transmissible and plant-pathogenic bacteria that multiply intracellularly in both plants and insects through host switching. Our previous study revealed that phytoplasmal sigma factor rpoD of OY-M strain (rpoDOY) could be a key regulator of host switching, because the expression level of rpoDOY was higher in insect hosts than in plant hosts. In this study, we developed an in vitro transcription assay system to identify RpoDOY-dependent genes and the consensus promoter elements. The assay revealed that RpoDOY regulated some housekeeping, virulence, and host–phytoplasma interaction genes of OY-M strain. The upstream region of the transcription start sites of these genes contained conserved –35 and –10 promoter sequences, which were similar to the typical bacterial RpoD-dependent promoter elements, while the –35 promoter elements were variable. In addition, we searched putative RpoD-dependent genes based on these promoter elements on the whole genome sequence of phytoplasmas using in silico tools. The phytoplasmal RpoD seems to mediate the transcription of not only many housekeeping genes as the principal sigma factor, but also the virulence- and host-phytoplasma interaction-related genes exhibiting host-specific expression patterns. These results indicate that more complex mechanisms exist than previously thought regarding gene regulation enabling phytoplasmas to switch hosts.
Collapse
Affiliation(s)
- Chihiro Miura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ken Komatsu
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Kensaku Maejima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takamichi Nijo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yugo Kitazawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tatsuya Tomomitsu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Akira Yusa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Misako Himeno
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kenro Oshima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shigetou Namba
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
4
|
Decreasing global transcript levels over time suggest that phytoplasma cells enter stationary phase during plant and insect colonization. Appl Environ Microbiol 2015; 81:2591-602. [PMID: 25636844 DOI: 10.1128/aem.03096-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To highlight different transcriptional behaviors of the phytoplasma in the plant and animal host, expression of 14 genes of "Candidatus Phytoplasma asteris," chrysanthemum yellows strain, was investigated at different times following the infection of a plant host (Arabidopsis thaliana) and two insect vector species (Macrosteles quadripunctulatus and Euscelidius variegatus). Target genes were selected among those encoding antigenic membrane proteins, membrane transporters, secreted proteins, and general enzymes. Transcripts were detected for all analyzed genes in the three hosts; in particular, those encoding the antigenic membrane protein Amp, elements of the mechanosensitive channel, and two of the four secreted proteins (SAP54 and TENGU) were highly accumulated, suggesting that they play important roles in phytoplasma physiology during the infection cycle. Most transcripts were present at higher abundance in the plant host than in the insect hosts. Generally, transcript levels of the selected genes decreased significantly during infection of A. thaliana and M. quadripunctulatus but were more constant in E. variegatus. Such decreases may be explained by the fact that only a fraction of the phytoplasma population was transcribing, while the remaining part was aging to a stationary phase. This strategy might improve long-term survival, thereby increasing the likelihood that the pathogen may be acquired by a vector and/or inoculated to a healthy plant.
Collapse
|
5
|
Kakizawa S, Kamagata Y. A Multiplex-PCR Method for Strain Identification and Detailed Phylogenetic Analysis of AY-Group Phytoplasmas. PLANT DISEASE 2014; 98:299-305. [PMID: 30708443 DOI: 10.1094/pdis-03-13-0216-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phytoplasmas are plant pathogenic bacteria that cause devastating losses in the yield of diverse crops worldwide. Specific detection and strain identification of phytoplasmas is important to prevent the spread of phytoplasma-induced diseases. Hence, methods to rapidly detect these organisms are important for pest control. Polymerase chain reaction (PCR) methods using phytoplasma-specific primers are widely used to detect phytoplasmas from infected plants and insects because they are highly sensitive, easily handled, and have a variety of analytical secondary applications. The phytoplasma 16S rDNA was widely used as a target of the PCR detection method; however, further target genes and more rapid methods have been required for more specific detection of phytoplasmas. Here, we developed a multiplex-PCR system to amplify several phytoplasma genes. We designed 36 primers, based on the genome sequence of 'Candidatus Phytoplasma asteris', to amplify 18 single-copy genes covering wide regions of the phytoplasma genome. Nine genes could be simultaneously amplified in a single PCR. This multiplex-PCR was applied to DNAs from 10 phytoplasma strains belonging to the AY-group, and different amplification patterns were obtained between strains, suggesting that this method would allow us to differentiate phytoplasmas at the strain level. Direct sequencing was also possible after the multiplex-PCR amplification by a modified sequencing method. Detailed phylogenetic analysis was performed using concatenated sequences, and evolutionary relationships among four Japanese isolates were revealed, where these strains could not be distinguished by their 16S rDNA. Thus, this multiplex-PCR system is useful for rapid strain identification and detailed phylogenetic analysis of phytoplasmas.
Collapse
Affiliation(s)
- Shigeyuki Kakizawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|