1
|
Chen Y, Zhang S, Zeng B, Lv J, Shi B, Liu Y, Zhu M, Xu C, Cao Y, Zhang B, Dai S, Li J, Li X, Sun Q, Gu J. PUS1 facilitates cell migration in clear cell renal cell carcinoma through the promotion of mRNA pseudouridylation and the stabilization of the SMOX gene. Cell Signal 2025; 130:111700. [PMID: 39993614 DOI: 10.1016/j.cellsig.2025.111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/12/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a highly aggressive malignancy characterized by its propensity for metastasis. Pseudouridine synthase 1 (PUS1), an enzyme involved in RNA modification, has been implicated in cancer progression, but its role in ccRCC remains unclear. This study investigates PUS1's role in ccRCC and evaluates its potential as a prognostic biomarker and therapeutic target. We assessed PUS1 expression in 541 ccRCC samples from The Cancer Genome Atlas (TCGA) and utilized Receiver Operating Characteristic (ROC) analyses to determine its prognostic value. High PUS1 levels were associated with reduced overall and disease-specific survival in ccRCC patients. Functional assays demonstrated that PUS1 promotes cell migration by stabilizing SMOX mRNA via pseudouridylation. The transcription factor USF1 regulates PUS1 expression by binding to its promoter region, enhancing its transcriptional activity. PUS1 silencing in ccRCC cell lines significantly reduced cell migration, while its overexpression had the opposite effect. These findings implicate the USF1-PUS1-SMOX signaling axis in regulating the migratory abilities of ccRCC cells. In conclusion, PUS1 plays a pivotal role in ccRCC progression and serves as an independent prognostic biomarker. Targeting PUS1 may offer promising therapeutic strategies for ccRCC patients. Further research is needed to explore its function in other cancers and to clarify its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yao Chen
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province 050061, China
| | - Sujing Zhang
- Department of Nuclear Medicine, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province 050061, China
| | - Bowen Zeng
- Department of Urology, The Affiliated Hospital of Sergeant School of Army Medical University, No. 10, Dajing Street, Xinhua District, Shijiazhuang, Hebei Province 050047, China
| | - Jingwei Lv
- Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang, Hebei Province 050017, China
| | - Bei Shi
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province 050061, China
| | - Yuepeng Liu
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province 050061, China
| | - Meng Zhu
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province 050061, China
| | - Chao Xu
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province 050061, China
| | - Yilong Cao
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province 050061, China
| | - Bowei Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province 050061, China
| | - Shengtao Dai
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province 050061, China
| | - Jiehan Li
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province 050061, China
| | - Xiaoling Li
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province 050061, China
| | - Qingyun Sun
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province 050061, China
| | - Junfei Gu
- Department of Urology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province 050061, China.
| |
Collapse
|
2
|
Bounder G, Jouimyi MR, Essaidi I, Elyounsi I, Boura H, Michel V, Badre W, Touati E, Maachi F. Upstream stimulating factor 1 (USF1) -202 G/A polymorphism and serum levels of USF1 and USF2 are associated with gastric cancer risk: a case control study. J Cancer Res Clin Oncol 2025; 151:113. [PMID: 40102295 PMCID: PMC11919976 DOI: 10.1007/s00432-025-06158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE Gastric cancer is an inflammation-driven disease often associated with a bad prognosis. Upstream stimulatory factors USF1 and USF2 are pleiotropic transcription factors, with tumor suppressor function. Low expression of USF1 is associated with low survival in gastric cancer patients. USF1 genetic polymorphism -202G > A has been associated with cancer susceptibility. Our aim was to investigate USF1 gene polymorphism and serum level with the risk of gastric cancer. METHODS USF1-202 G/A polymorphism was analyzed by sanger sequencing, with the measure of USF1/USF2 serum levels by ELISA in H. pylori-positive patients with chronic gastritis, gastric precancerous lesions, gastric cancer and in healthy controls. RESULTS Our results show that the presence of the USF1-202 A allele increased the risk of gastric cancer compared to G (OR = 2; 95% CI 1.07-3.9; P = 0.02). Genotypically and under the dominant mutation model, the combined USF1- GA/AA -202 genotypes corresponded to higher risk of gastric cancer (OR = 3.5; 95% CI 1.4-8.2; p-value = 0.005) than the GG genotype. Moreover, the G/A transition at USF1-202 was associated with lower USF1 serum level, and mostly observed in gastric cancer patients where the average serological level of USF1 were 2.3 and twofold lower for the AA and GA genotypes, respectively, compared to GG. CONCLUSION USF1-202 G/A polymorphism constitutes a gastric cancer genetic risk factor. Together with USF1/USF2 serum level, they can be proposed as promising biomarkers for gastric cancer detection/prevention.
Collapse
Grants
- ACIP2015-10 INSTITUT PASTEUR Paris, as a Pasteur International Concerted action,
- ACIP2015-10 INSTITUT PASTEUR Paris, as a Pasteur International Concerted action,
- ACIP2015-10 INSTITUT PASTEUR Paris, as a Pasteur International Concerted action,
- ACIP2015-10 INSTITUT PASTEUR Paris, as a Pasteur International Concerted action,
- ACIP2015-10 INSTITUT PASTEUR Paris, as a Pasteur International Concerted action,
- ACIP2015-10 INSTITUT PASTEUR Paris, as a Pasteur International Concerted action,
- ACIP2015-10 INSTITUT PASTEUR Paris, as a Pasteur International Concerted action,
- Institut Pasteur du Maroc
Collapse
Affiliation(s)
- Ghizlane Bounder
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Mohamed Reda Jouimyi
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Imane Essaidi
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | | | - Hasna Boura
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Valérie Michel
- Équipe DMic01-Infection, Génotoxicité et Cancer, Département de Microbiologie, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6047, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Wafa Badre
- Gastroenterology Department, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Eliette Touati
- Équipe DMic01-Infection, Génotoxicité et Cancer, Département de Microbiologie, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6047, Institut Pasteur, Université Paris Cité, 75015, Paris, France.
| | - Fatima Maachi
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
| |
Collapse
|
3
|
Zeng YL, Gao F, Zhang C, Ren PP, Ma L, Wang X, Wang R, Kang Y, Li K. USF1 modulates transcription and cellular functions by regulating multiple transcription factors in Huh7 cells. Oncol Lett 2023; 26:532. [PMID: 38020298 PMCID: PMC10655063 DOI: 10.3892/ol.2023.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Liver cancer, including hepatocellular carcinoma (HCC), is a malignant tumor that has high rates of metastasis and mortality worldwide. Upstream transcription factor 1 (USF1) is a canonical transcription factor (TF) and is associated with the pathogenesis of several cancers, but its biological functions and molecular targets in HCC remain unclear. Huh7 cells that overexpress USF1 were used with whole transcriptome profiling through RNA sequencing and chromatin immunoprecipitation (ChIP) sequencing methods to investigate the downstream targets of USF1. Reverse transcription-quantitative PCR was then used to validate the downstream targets. The results showed that USF1 significantly regulates 350 differentially expressed genes (DEGs). The upregulated DEGs were primarily protein-coding genes enriched in immune and inflammation response pathways, while the downregulated DEGs were mainly coding long non-coding (lnc)RNAs, indicating the regulatory function of USF1. It was also demonstrated that USF1 directly binds to the promoter region of 2,492 genes, which may be involved in the viral progression and cell proliferation pathways. By integrating these two datasets, 16 overlapped genes were detected, including downregulated lncRNA-NEAT1 and upregulated TF-ETV5. The downregulated lncRNA-NEAT1 showed reverse expression pattern and prognosis result compared with that of USF1 in patients with liver cancer, while upregulated TF-ETV5 showed consistent results with USF1. Promoter region motif analysis indicated that ETV5 has more binding motifs and genes than USF1 itself for USF1-regulated DEGs, indicating that USF1 may indirectly modulate gene expression by regulating ETV5 expression in Huh7 cells. The study also validated the direct interaction between USF1 and the promoter of ETV5 using ChIP-qPCR. In summary, the results demonstrated that USF1 binds to the promoter region of thousands of genes and affects a large part of DEGs indirectly. Downstream genes, including lncRNA-NEAT1 and TF-ETV5, may also have potential functions in the regulated network by USF1 and have potential functions in the progression of HCC. The present findings suggested that USF1 and its downstream targets could be potential targets for HCC therapy in the future.
Collapse
Affiliation(s)
- Yan-Li Zeng
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Infectious Diseases, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Infectious Diseases, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Fei Gao
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Can Zhang
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Pei-Pei Ren
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Li Ma
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xin Wang
- Department of Infectious Diseases, Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Ruzhen Wang
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yi Kang
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Ke Li
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
4
|
Liu X, Wang ZZ, Meng S, Zang F, Zhang H, Wang J, Chen YZ. Systematic analysis reveals distinct roles of USF family proteins in various cancer types. Int J Biol Markers 2023; 38:243-252. [PMID: 37846061 DOI: 10.1177/03936155231206135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
BACKGROUND Upstream stimulatory factors (USFs) are members of the basic helix-loop-helix leucine zipper transcription factor family, including USF1, USF2, and USF3. The first two members have been well studied compared to the third member, USF3, which has received scarce attention in cancer research to date. Despite a recently reported association of its alteration with thyroid carcinoma, its expression has not been previously analyzed. METHODS We comprehensively analyzed differential levels of USFs expression, genomic alteration, DNA methylation, and their prognostic value across different cancer types and the possible correlation with tumor-infiltrating immune cells and drug response by using different bioinformatics tools. RESULTS Our findings established that USFs play an important role in cancers related to the urinary system and justify the necessity for further investigation. We implemented and offer a useful ShinyApp to facilitate researchers' efforts to inquire about any other gene of interest and to perform the analysis of drug response in a user-friendly fashion at http://zzdlab.com:3838/Drugdiscovery/.
Collapse
Affiliation(s)
- Xia Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Zhuo-Zhi Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Shuai Meng
- Department of Pharmacy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Fenglin Zang
- Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yong-Zi Chen
- Laboratory of Tumor Cell Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Fu D, Si Q, Yu C, Han Z, Zang L. USF1-mediated ALKBH5 stabilizes FLII mRNA in an m6A-YTHDF2-dependent manner to repress glycolytic activity in prostate adenocarcinoma. Mol Carcinog 2023; 62:1700-1716. [PMID: 37493109 DOI: 10.1002/mc.23609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
Upstream-stimulating factor 1 (USF1) is a ubiquitously expressed transcription factor implicated in multiple cellular processes, including metabolism and proliferation. This study focused on the function of USF1 in glycolysis and the malignant development of prostate adenocarcinoma (PRAD). Bioinformatics predictions suggested that USF1 is poorly expressed in PRAD. The clinical PRAD samples revealed a low level of USF1, which was correlated with an unfavorable prognosis. Artificial upregulation of USF1 significantly repressed glycolytic activity in PRAD cells and reduced cell growth and metastasis in vitro and in vivo. Potential downstream genes of USF1 were probed by integrated bioinformatics analyses. The chromatin immunoprecipitation and luciferase assays indicated that USF1 bound to the α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) promoter for transcription activation. Flightless I (FLII) was identified as the gene showing the highest degree of correlation with ALKBH5. As an m6A demethylase, ALKBH5 enhanced FLII mRNA stability by inducing m6A demethylation in an m6A-YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2)-dependent manner. Either silencing of ALKBH5 or FLII blocked the role of USF1 in PARD cells and restored glycolysis, cell proliferation, and invasion. This study demonstrates that USF1 activates ALKBH5 to stabilize FLII mRNA in an m6A-YTHDF2-dependent manner, thereby repressing glycolysis processes and the progression of PRAD.
Collapse
Affiliation(s)
- Dewang Fu
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Qingyue Si
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Chenxi Yu
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Zhifu Han
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Li'e Zang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| |
Collapse
|
6
|
da Mota THA, Camargo R, Biojone ER, Guimarães AFR, Pittella-Silva F, de Oliveira DM. The Relevance of Telomerase and Telomere-Associated Proteins in B-Acute Lymphoblastic Leukemia. Genes (Basel) 2023; 14:genes14030691. [PMID: 36980962 PMCID: PMC10048576 DOI: 10.3390/genes14030691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Telomeres and telomerase are closely linked to uncontrolled cellular proliferation, immortalization and carcinogenesis. Telomerase has been largely studied in the context of cancer, including leukemias. Deregulation of human telomerase gene hTERT is a well-established step in leukemia development. B-acute lymphoblastic leukemia (B-ALL) recovery rates exceed 90% in children; however, the relapse rate is around 20% among treated patients, and 10% of these are still incurable. This review highlights the biological and clinical relevance of telomerase for B-ALL and the implications of its canonical and non-canonical action on signaling pathways in the context of disease and treatment. The physiological role of telomerase in lymphocytes makes the study of its biomarker potential a great challenge. Nevertheless, many works have demonstrated that high telomerase activity or hTERT expression, as well as short telomeres, correlate with poor prognosis in B-ALL. Telomerase and related proteins have been proven to be promising pharmacological targets. Likewise, combined therapy with telomerase inhibitors may turn out to be an alternative strategy for B-ALL.
Collapse
Affiliation(s)
- Tales Henrique Andrade da Mota
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Brasilia 70910-900, Brazil
- Laboratory of Molecular Analysis, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, Brazil
- Correspondence:
| | - Ricardo Camargo
- Brasília Children’s Hospital José Alencar, Brasilia 70684-831, Brazil
| | | | - Ana Flávia Reis Guimarães
- Laboratory of Molecular Analysis, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, Brazil
| | - Fabio Pittella-Silva
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Brasilia 70910-900, Brazil
| | | |
Collapse
|
7
|
Zhou Y, Zhao Y, Ma W, Zhang L, Jiang Y, Dong W. USF1-CHCHD4 axis promotes lung adenocarcinoma progression partially via activating the MYC pathway. Discov Oncol 2022; 13:136. [PMID: 36482116 PMCID: PMC9732179 DOI: 10.1007/s12672-022-00600-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to identify genes related to lung adenocarcinoma (LUAD) and investigate the effects and molecular mechanisms of coiled-coil-helix-coiled-coil-helix domain containing 4 (CHCHD4) in the progression of LUAD. METHODS The GEPIA database was used to evaluate the differential expression of CHCHD4 and the survival data of LUAD patients compared to controls. TCGA-LUAD database, JASPAR website, and GSEA were used to analyse the relationship between CHCHD4 and the upstream stimulating factor 1 (USF1) or MYC pathways. The proliferation, apoptosis, migration, and invasion of LUAD cells were evaluated using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, colony formation, flow cytometry, wound healing, and transwell assays. qRT-PCR, western blotting, and immunohistochemistry were used to detect the mRNA and protein expression, respectively. Furthermore, xenograft tumours from nude mice were used to verify the effect of CHCHD4 on LUAD in vivo. RESULTS CHCHD4 overexpression was found in LUAD tumor tissues and cells, and high CHCHD4 was associated with a poor prognosis. Interestingly, CHCHD4 knockdown suppressed the malignant phenotype of the LUAD cells. Moreover, we found that USF1 upregulated CHCHD4 and promoted LUAD progression. CHCHD4 knockdown also inhibited the progression of LUAD. In addition, CHCHD4 knockdown suppressed xenograft tumour growth. CONCLUSION USF1-CHCHD4 axis can promote LUAD progress, which may be through activating MYC pathway.
Collapse
Affiliation(s)
- Yuhui Zhou
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Yunxia Zhao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Wei Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Lin Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Yuanzhu Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Wei Dong
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China.
| |
Collapse
|
8
|
You GR, Chang JT, Li HF, Cheng AJ. Multifaceted and Intricate Oncogenic Mechanisms of NDRG1 in Head and Neck Cancer Depend on Its C-Terminal 3R-Motif. Cells 2022; 11:cells11091581. [PMID: 35563887 PMCID: PMC9104279 DOI: 10.3390/cells11091581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
N-Myc downstream-regulated 1 (NDRG1) has inconsistent oncogenic functions in various cancers. We surveyed and characterized the role of NDRG1 in head and neck cancer (HNC). Cellular methods included spheroid cell formation, clonogenic survival, cell viability, and Matrigel invasion assays. Molecular techniques included transcriptomic profiling, RT-qPCR, immunoblotting, in vitro phosphorylation, immunofluorescent staining, and confocal microscopy. Prognostic significance was assessed by Kaplan–Meier analysis. NDRG1 participated in diverse oncogenic functions in HNC cells, mainly stress response and cell motility. Notably, NDRG1 contributed to spheroid cell growth, radio-chemoresistance, and upregulation of stemness-related markers (CD44 and Twist1). NDRG1 facilitated cell migration and invasion, and was associated with modulation of the extracellular matrix molecules (fibronectin, vimentin). Characterizing the 3R-motif in NDRG1 revealed its mechanism in the differential regulation of the phenotypes. The 3R-motif displayed minimal effect on cancer stemness but was crucial for cell motility. Phosphorylating the motif by GSK3b at serine residues led to its nuclear translocation to promote motility. Clinical analyses supported the oncogenic function of NDRG1, which was overexpressed in HNC and associated with poor prognosis. The data elucidate the multifaceted and intricate mechanisms of NDRG1 in HNC. NDRG1 may be a prognostic indicator or therapeutic target for refractory HNC.
Collapse
Affiliation(s)
- Guo-Rung You
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Joseph T. Chang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 33302, Taiwan;
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiao-Fan Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Correspondence: ; Tel.: +886-3-211-8800
| |
Collapse
|
9
|
Mechanism of Human Telomerase Reverse Transcriptase ( hTERT) Regulation and Clinical Impacts in Leukemia. Genes (Basel) 2021; 12:genes12081188. [PMID: 34440361 PMCID: PMC8392866 DOI: 10.3390/genes12081188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
The proliferative capacity and continuous survival of cells are highly dependent on telomerase expression and the maintenance of telomere length. For this reason, elevated expression of telomerase has been identified in virtually all cancers, including leukemias; however, it should be noted that expression of telomerase is sometimes observed later in malignant development. This time point of activation is highly dependent on the type of leukemia and its causative factors. Many recent studies in this field have contributed to the elucidation of the mechanisms by which the various forms of leukemias increase telomerase activity. These include the dysregulation of telomerase reverse transcriptase (TERT) at various levels which include transcriptional, post-transcriptional, and post-translational stages. The pathways and biological molecules involved in these processes are also being deciphered with the advent of enabling technologies such as next-generation sequencing (NGS), ribonucleic acid sequencing (RNA-Seq), liquid chromatography-mass spectrometry (LCMS/MS), and many others. It has also been established that TERT possess diagnostic value as most adult cells do not express high levels of telomerase. Indeed, studies have shown that prognosis is not favorable in patients who have leukemias expressing high levels of telomerase. Recent research has indicated that targeting of this gene is able to control the survival of malignant cells and therefore offers a potential treatment for TERT-dependent leukemias. Here we review the mechanisms of hTERT regulation and deliberate their association in malignant states of leukemic cells. Further, we also cover the clinical implications of this gene including its use in diagnostic, prognostic, and therapeutic discoveries.
Collapse
|
10
|
The transcription factor USF1 promotes glioma cell invasion and migration by activating lncRNA HAS2-AS1. Biosci Rep 2021; 40:226032. [PMID: 32776110 PMCID: PMC7442972 DOI: 10.1042/bsr20200487] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: The role of lncRNAs in tumor has been widely concerned. The present study took HAS2-AS1 (the antisense RNA 1 of HAS2) as a starting point to explore its expression in glioma and its role in the process of migration and invasion, providing a strong theoretical basis for mining potential therapeutic targets of glioma. Methods: Clinical data of glioma were obtained from The Cancer Genome Atlas (TCGA) database and differentially expressed lncRNAs were analyzed by edgeR. The hTFtarget database was used to predict the upstream transcription factors of HAS2-AS1 and the JASPAR website was used to predict the binding sites of human upstream transcription factor 1 (USF1) and HAS2-AS1. qRT-PCR was used to detect the expressions of HAS2-AS1 and USF1 in glioma tissues and cell lines. The effects of silencing HAS2-AS1 on the migration and invasion of cancer cells were verified by wound healing and Transwell invasion assays. The chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays were applied to demonstrate the binding of USF1 and HAS2-AS1 promoter region. Western blot was used to detect the expressions of epithelial–mesenchymal transition (EMT)-related proteins. Results: HAS2-AS1 was highly expressed in glioma tissues and cells, and was significantly associated with poor prognosis. Silencing HAS2-AS1 expression inhibited glioma cell migration, invasion and EMT. USF1 was highly expressed in glioma and positively correlated with HAS2-AS1. The transcription of HAS2-AS1 was activated by USF1 via binding to HAS2-AS1 promoter region, consequently potentiating the invasion and migration abilities of glioma cells. Conclusion: These results suggested that the transcription factor USF1 induced up-regulation of lncRNA HAS2-AS1 and promoted glioma cell invasion and migration.
Collapse
|
11
|
Li S, Zhang J, Qian S, Wu X, Sun L, Ling T, Jin Y, Li W, Sun L, Lai M, Xu F. S100A8 promotes epithelial-mesenchymal transition and metastasis under TGF-β/USF2 axis in colorectal cancer. Cancer Commun (Lond) 2021; 41:154-170. [PMID: 33389821 PMCID: PMC7896751 DOI: 10.1002/cac2.12130] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/25/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background The transforming growth factor‐β (TGF‐β) pathway plays a pivotal role in inducing epithelial‐mesenchymal transition (EMT), which is a key step in cancer invasion and metastasis. However, the regulatory mechanism of TGF‐β in inducing EMT in colorectal cancer (CRC) has not been fully elucidated. In previous studies, it was found that S100A8 may regulate EMT. This study aimed to clarify the role of S100A8 in TGF‐β‐induced EMT and explore the underlying mechanism in CRC. Methods S100A8 and upstream transcription factor 2 (USF2) expression was detected by immunohistochemistry in 412 CRC tissues. Kaplan‐Meier survival analysis was performed. In vitro, Western blot, and migration and invasion assays were performed to investigate the effects of S100A8 and USF2 on TGF‐β‐induced EMT. Mouse metastasis models were used to determine in vivo metastasis ability. Luciferase reporter and chromatin immunoprecipitation assay were used to explore the role of USF2 on S100A8 transcription. Results During TGF‐β‐induced EMT in CRC cells, S100A8 and the transcription factor USF2 were upregulated. S100A8 promoted cell migration and invasion and EMT. USF2 transcriptionally regulated S100A8 expression by directly binding to its promoter region. Furthermore, TGF‐β enhanced the USF2/S100A8 signaling axis of CRC cells whereas extracellular S100A8 inhibited the USF2/S100A8 axis of CRC cells. S100A8 expression in tumor cells was associated with poor overall survival in CRC. USF2 expression was positively related to S100A8 expression in tumor cells but negatively related to S100A8‐positive stromal cells. Conclusions TGF‐β was found to promote EMT and metastasis through the USF2/S100A8 axis in CRC while extracellular S100A8 suppressed the USF2/S100A8 axis. USF2 was identified as an important switch on the intracellular and extracellular S100A8 feedback loop.
Collapse
Affiliation(s)
- Si Li
- Department of Pathology and Pathophysiology, and Department of General Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jun Zhang
- Department of Pathology and Pathophysiology, and Department of General Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Senmi Qian
- Department of Pathology and Pathophysiology, and Department of General Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xuesong Wu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Liang Sun
- Department of Pathology and Pathophysiology, and Department of General Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Tianyi Ling
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yao Jin
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Wenxiao Li
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Lichao Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Maode Lai
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Fangying Xu
- Department of Pathology and Pathophysiology, and Department of General Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
12
|
Costa L, Corre S, Michel V, Le Luel K, Fernandes J, Ziveri J, Jouvion G, Danckaert A, Mouchet N, Da Silva Barreira D, Torres J, Camorlinga M, D'Elios MM, Fiette L, De Reuse H, Galibert MD, Touati E. USF1 defect drives p53 degradation during Helicobacter pylori infection and accelerates gastric carcinogenesis. Gut 2020; 69:1582-1591. [PMID: 31822580 PMCID: PMC7456735 DOI: 10.1136/gutjnl-2019-318640] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/24/2019] [Accepted: 11/24/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Helicobacter pylori (Hp) is a major risk factor for gastric cancer (GC). Hp promotes DNA damage and proteasomal degradation of p53, the guardian of genome stability. Hp reduces the expression of the transcription factor USF1 shown to stabilise p53 in response to genotoxic stress. We investigated whether Hp-mediated USF1 deregulation impacts p53-response and consequently genetic instability. We also explored in vivo the role of USF1 in gastric carcinogenesis. DESIGN Human gastric epithelial cell lines were infected with Hp7.13, exposed or not to a DNA-damaging agent camptothecin (CPT), to mimic a genetic instability context. We quantified the expression of USF1, p53 and their target genes, we determined their subcellular localisation by immunofluorescence and examined USF1/p53 interaction. Usf1-/- and INS-GAS mice were used to strengthen the findings in vivo and patient data examined for clinical relevance. RESULTS In vivo we revealed the dominant role of USF1 in protecting gastric cells against Hp-induced carcinogenesis and its impact on p53 levels. In vitro, Hp delocalises USF1 into foci close to cell membranes. Hp prevents USF1/p53 nuclear built up and relocates these complexes in the cytoplasm, thereby impairing their transcriptional function. Hp also inhibits CPT-induced USF1/p53 nuclear complexes, exacerbating CPT-dependent DNA damaging effects. CONCLUSION Our data reveal that the depletion of USF1 and its de-localisation in the vicinity of cell membranes are essential events associated to the genotoxic activity of Hp infection, thus promoting gastric carcinogenesis. These findings are also of clinical relevance, supporting USF1 expression as a potential marker of GC susceptibility.
Collapse
Affiliation(s)
- Lionel Costa
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS ERL6002, Institut Pasteur, Paris, France,INSERM U1016, CNRS UMR 8104, Institut Cochin, Paris, France,Université Paris Diderot, Sorbone Paris Cité, Paris, France
| | - Sébastien Corre
- Institut de Génétique et Développement, Université de Rennes 1, Rennes, France
| | - Valérie Michel
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS ERL6002, Institut Pasteur, Paris, France
| | - Krysten Le Luel
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS ERL6002, Institut Pasteur, Paris, France,Université Paris Diderot, Sorbone Paris Cité, Paris, France
| | - Julien Fernandes
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS ERL6002, Institut Pasteur, Paris, France,UtechS PBI-C2RT, Institut Pasteur, Paris, France
| | - Jason Ziveri
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS ERL6002, Institut Pasteur, Paris, France,Pathogenesis of Systemic Infection, Institut Fédératif de Recherche Necker-Enfants Malades, Paris, France
| | - Gregory Jouvion
- Unit of Experimental Neuropathology, Department of Global Health, Institut Pasteur, Paris, France
| | | | - Nicolas Mouchet
- Institut de Génétique et Développement, Université de Rennes 1, Rennes, France
| | - David Da Silva Barreira
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS ERL6002, Institut Pasteur, Paris, France,AgroSup, Laboratoire PAM UMR A 02.102, Université de Bourgogne, Dijon, France
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatria, Instituto Mexicano del Seguro Social (IMSS), México city, Mexico
| | - Margarita Camorlinga
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatria, Instituto Mexicano del Seguro Social (IMSS), México city, Mexico
| | - Mario Milco D'Elios
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laurence Fiette
- Unit of Experimental Neuropathology, Department of Global Health, Institut Pasteur, Paris, France,Institut Mutualiste Montsouris, Paris, France
| | - Hilde De Reuse
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS ERL6002, Institut Pasteur, Paris, France
| | - Marie-Dominique Galibert
- Institut de Génétique et Développement, Université de Rennes 1, Rennes, France,CHU, Department of Molecular Genetics and Genomics, Université de Rennes 1, Rennes, France
| | - Eliette Touati
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS ERL6002, Institut Pasteur, Paris, France
| |
Collapse
|
13
|
Sun Q, Li J, Li F, Li H, Bei S, Zhang X, Feng L. LncRNA LOXL1-AS1 facilitates the tumorigenesis and stemness of gastric carcinoma via regulation of miR-708-5p/USF1 pathway. Cell Prolif 2019; 52:e12687. [PMID: 31468594 PMCID: PMC6869681 DOI: 10.1111/cpr.12687] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022] Open
Abstract
Objectives As one of the most life‐threatening malignancies, gastric cancer is the third contributor of cancer mortalities globally. Increasing studies have proven the regulatory roles of lncRNAs in the development of diverse malignant tumours. But little is known about its function and molecular mechanism in gastric carcinoma. Materials and methods RT‐qPCR was performed to measure the expression pattern of LOXL1‐AS1 in gastric cancer. To ascertain its definite role, CCK‐8, EdU, Western blot, transwell and sphere formation assays were adopted. RNA pull‐down, RIP, ChIP and luciferase reporter assays were carried out to investigate the molecular mechanism of LOXL1‐AS1 in gastric carcinoma. Results LOXL1‐AS1 was highly expressed in tissues and cells of gastric cancer. The upregulation of LOXL1‐AS1 predicted poor prognosis in gastric carcinoma. Our findings demonstrated that LOXL1‐AS1 accelerated the deterioration of gastric cancer by inducing cell proliferation, migration, EMT and stemness. Moreover, the expression of USF1 in gastric cancer was higher than in normal control and LOXL1‐AS1 negatively modulated USF1. Functionally, LOXL1‐AS1 acted as a ceRNA to upregulate USF1 via sponging miR‐708‐5p. Besides, we confirmed USF1 promoted the transcription of stemness marker SOX2. Rescue experiments testified the stimulative role of LOXL1‐AS1/miR‐708‐5p/USF1 pathway in gastric cancer progression. It was also validated that LOXL1‐AS1 facilitated cell growth of gastric carcinoma in vivo. Conclusions Our study unravelled that LOXL1‐AS1/miR‐708‐5p/USF1 pathway contributed to the development of gastric cancer.
Collapse
Affiliation(s)
- Qi Sun
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Jian Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Fan Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Huanqin Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Songhua Bei
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaohong Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Li Feng
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Chi TF, Horbach T, Götz C, Kietzmann T, Dimova EY. Cyclin-Dependent Kinase 5 (CDK5)-Mediated Phosphorylation of Upstream Stimulatory Factor 2 (USF2) Contributes to Carcinogenesis. Cancers (Basel) 2019; 11:cancers11040523. [PMID: 31013770 PMCID: PMC6521020 DOI: 10.3390/cancers11040523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/30/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
The transcription factor USF2 is supposed to have an important role in tumor development. However, the regulatory mechanisms contributing to the function of USF2 are largely unknown. Cyclin-dependent kinase 5 (CDK5) seems to be of importance since high levels of CDK5 were found in different cancers associated with high USF2 expression. Here, we identified USF2 as a phosphorylation target of CDK5. USF2 is phosphorylated by CDK5 at two serine residues, serine 155 and serine 222. Further, phosphorylation of USF2 at these residues was shown to stabilize the protein and to regulate cellular growth and migration. Altogether, these results delineate the importance of the CDK5-USF2 interplay in cancer cells.
Collapse
Affiliation(s)
- Tabughang Franklin Chi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland; (T.F.C.); (T.K.)
| | - Tina Horbach
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland; (T.F.C.); (T.K.)
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany;
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland; (T.F.C.); (T.K.)
| | - Elitsa Y. Dimova
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland; (T.F.C.); (T.K.)
- Correspondence: ; Tel.: +358-0-294-485-785; Fax: +358-8-553-114
| |
Collapse
|
15
|
Wang D, Zheng J, Liu X, Xue Y, Liu L, Ma J, He Q, Li Z, Cai H, Liu Y. Knockdown of USF1 Inhibits the Vasculogenic Mimicry of Glioma Cells via Stimulating SNHG16/miR-212-3p and linc00667/miR-429 Axis. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 14:465-482. [PMID: 30743215 PMCID: PMC6369224 DOI: 10.1016/j.omtn.2018.12.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
The anti-angiogenic treatment of malignant glioma cells is an effective method to treat high-grade gliomas. However, due to the presence of vasculogenic mimicry (VM), the anti-angiogenic treatment of gliomas is not significantly effective in improving overall patient median survival. Therefore, this study investigated the mechanism of mimic formation of angiogenesis in gliomas. The results of this experiment indicate that the expression of upstream transcription factor 1 (USF1) is upregulated in glioma tissues and cells. USF1 knockdown inhibits the proliferation, migration, invasion, VM, and expression of VM-associated proteins in glioma cells by stimulating SNHG16 and linc00667. These two long non-coding RNAs (lncRNAs) regulate ALHD1A1 through the competing endogenous RNA (ceRNA) mechanism influencing the VM of glioma. This study is the first to demonstrate that the USF1/SNHG16/miR-212-3p/ALDH1A1 (aldehyde dehydrogenase-1) and USF1/linc00667/miR-429/ALDH1A1 axis regulates the VM of glioma cells, and these findings might provide a novel strategy for glioma treatment.
Collapse
Affiliation(s)
- Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Qianru He
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
| |
Collapse
|
16
|
Kim KC, Yun J, Son DJ, Kim JY, Jung JK, Choi JS, Kim YR, Song JK, Kim SY, Kang SK, Shin DH, Roh YS, Han SB, Hong JT. Suppression of metastasis through inhibition of chitinase 3-like 1 expression by miR-125a-3p-mediated up-regulation of USF1. Am J Cancer Res 2018; 8:4409-4428. [PMID: 30214629 PMCID: PMC6134921 DOI: 10.7150/thno.26467] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/15/2018] [Indexed: 12/30/2022] Open
Abstract
Rationale: Chitinase 3-like 1 (Chi3L1) protein is up-regulated in various diseases including solid cancers. According to Genome-Wide Association Study (GWAS)/Online Mendelian Inheritance in Man (OMIM)/Differentially Expressed Gene (DEG) analyses, Chi3L1 is associated with 38 cancers, and more highly associated with cancer compared to other oncogenes such as EGFR, TNFα, etc. However, the mechanisms and pathways by which Chi3L1 is associated with cancer are not clear. In current study, we investigated the role of Chi3L1 in lung metastasis. Methods: We performed the differentially expressed gene analysis to explore the genes which are associated with Chi3L1 using the web-based platform from Biomart. We investigated the metastases in lung tissues of C57BL/6 mice injected with B16F10 melanoma following treatment with Ad-shChi3L1. We also investigated the expression of USF1 and Chi3L1 in Chi3L1 KD mice lung tissues by Western blotting and IHC. We also analyzed lung cancer cells metastases induced by Chi3L1 using migration and cell proliferation assay in human lung cancer cell lines. The involvement of miR-125a-3p in Chi3L1 regulation was determined by miRNA qPCR and luciferase reporter assay. Results: We showed that melanoma metastasis in lung tissues was significantly reduced in Chi3L1 knock-down mice, accompanied by down-regulation of MMP-9, MMP-13, VEGF, and PCNA in Chi3L1 knock-down mice lung tissue, as well as in human lung cancer cell lines. We also found that USF1 was conversely expressed against Chi3L1. USF1 was increased by knock-down of Chi3L1 in mice lung tissues, as well as in human lung cancer cell lines. In addition, knock-down of USF1 increased Chi3L1 levels in addition to augmenting metastasis cell migration and proliferation in mice model, as well as in human cancer cell lines. Moreover, in human lung tumor tissues, the expression of Chi3L1 was increased but USF1 was decreased in a stage-dependent manner. Finally, Chi3L1 expression was strongly regulated by the indirect translational suppressing activity of USF1 through induction of miR-125a-3p, a target of Chi3L1. Conclusion: Metastases in mice lung tissues and human lung cancer cell lines were decreased by KD of Chi3L1. USF1 bound to the Chi3L1 promoter, however, Chi3L1 expression was decreased by USF1, despite USF1 enhancing the transcriptional activity of Chi3L1. We found that USF1 induced miR-125a-3p levels which suppressed Chi3L1 expression. Ultimately, our results suggest that lung metastasis is suppressed by knock-down of Chi3L1 through miR-125a-3p-mediated up-regulation of USF1.
Collapse
|
17
|
Kamranvar SA, Masucci MG. Regulation of Telomere Homeostasis during Epstein-Barr virus Infection and Immortalization. Viruses 2017; 9:v9080217. [PMID: 28792435 PMCID: PMC5580474 DOI: 10.3390/v9080217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
The acquisition of unlimited proliferative potential is dependent on the activation of mechanisms for telomere maintenance, which counteracts telomere shortening and the consequent triggering of the DNA damage response, cell cycle arrest, and apoptosis. The capacity of Epstein Barr virus (EBV) to infect B-lymphocytes in vitro and transform the infected cells into autonomously proliferating immortal cell lines underlies the association of this human gamma-herpesvirus with a broad variety of lymphoid and epithelial cell malignancies. Current evidence suggests that both telomerase-dependent and -independent pathways of telomere elongation are activated in the infected cells during the early and late phases of virus-induced immortalization. Here we review the interaction of EBV with different components of the telomere maintenance machinery and the mechanisms by which the virus regulates telomere homeostasis in proliferating cells. We also discuss how these viral strategies may contribute to malignant transformation.
Collapse
Affiliation(s)
- Siamak A Kamranvar
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden.
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
18
|
Telomerase Induction in HPV Infection and Oncogenesis. Viruses 2017; 9:v9070180. [PMID: 28698524 PMCID: PMC5537672 DOI: 10.3390/v9070180] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/11/2022] Open
Abstract
Telomerase extends the repetitive DNA at the ends of linear chromosomes, and it is normally active in stem cells. When expressed in somatic diploid cells, it can lead to cellular immortalization. Human papillomaviruses (HPVs) are associated with and high-risk for cancer activate telomerase through the catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT). The expression of hTERT is affected by both high-risk HPVs, E6 and E7. Seminal studies over the last two decades have identified the transcriptional, epigenetic, and post-transcriptional roles high-risk E6 and E7 have in telomerase induction. This review will summarize these findings during infection and highlight the importance of telomerase activation as an oncogenic pathway in HPV-associated cancer development and progression.
Collapse
|
19
|
Katzenellenbogen RA. Activation of telomerase by HPVs. Virus Res 2017; 231:50-55. [DOI: 10.1016/j.virusres.2016.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
|
20
|
Transcription Regulation of the Human Telomerase Reverse Transcriptase (hTERT) Gene. Genes (Basel) 2016; 7:genes7080050. [PMID: 27548225 PMCID: PMC4999838 DOI: 10.3390/genes7080050] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem cells and induced pluripotent stem cells have the ability to maintain their telomere length via expression of an enzymatic complex called telomerase. Similarly, more than 85%–90% of cancer cells are found to upregulate the expression of telomerase, conferring them with the potential to proliferate indefinitely. Telomerase Reverse Transcriptase (TERT), the catalytic subunit of telomerase holoenzyme, is the rate-limiting factor in reconstituting telomerase activity in vivo. To date, the expression and function of the human Telomerase Reverse Transcriptase (hTERT) gene are known to be regulated at various molecular levels (including genetic, mRNA, protein and subcellular localization) by a number of diverse factors. Among these means of regulation, transcription modulation is the most important, as evident in its tight regulation in cancer cell survival as well as pluripotent stem cell maintenance and differentiation. Here, we discuss how hTERT gene transcription is regulated, mainly focusing on the contribution of trans-acting factors such as transcription factors and epigenetic modifiers, as well as genetic alterations in hTERT proximal promoter.
Collapse
|
21
|
Yuan Q, Bu Q, Li G, Zhang J, Cui T, Zhu R, Mu D. Association between single nucleotide polymorphisms of upstream transcription factor 1 (USF1) and susceptibility to papillary thyroid cancer. Clin Endocrinol (Oxf) 2016; 84:564-70. [PMID: 26052935 DOI: 10.1111/cen.12832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/02/2015] [Accepted: 06/01/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Thyroid cancer, predominantly by papillary thyroid cancer (PTC), is a malignant tumour of endocrine system with increasing incidence rate worldwide. Upstream transcription factor 1 (USF1) regulates a variety of biological processes by transactivation of functional genes. In this study, we investigated the association between USF1 polymorphisms and PTC risk. MATERIAL & METHODS A total of 334 patients with PTC, 186 patients with benign nodules (BN) and 668 healthy controls were enrolled in our study. Tag-SNPs were identified in Chinese Han in Beijing (CHB) from International HapMap Project Databases. Genomic DNAs were extracted by TaqMan Blood DNA kits. SNPs of USF1 were genotyped by TaqMan SNPs genotyping assay. Odds ratios (OR) and corresponding 95% confidence interval (CI) were used to assess the association between USF1 genetic variants and PTC risk. The statistical analyses were carried out with spss 13.0 software. RESULTS Five tag-SNPs were retrieved to capture all the genetic variants of USF1. Among the five tag-SNPs, genetic variants in rs2516838, rs3737787 and rs2516839 have significant association with PTC risk. The rs2516838 polymorphisms dominant model (CG+GG vs CC: OR = 0·71; 95% CI: 0·52-0·97; P = 0·033) and allelic model (C vs G: OR = 0·031; 95% CI: 0·56-0·97; P = 0·031) indicated it may act as a protective factor against PTC. On the contrary, the results of rs3737787 polymorphisms: dominant model (CT+TT vs CC: OR = 1·55; 95%CI: 1·09-2·02; P = 0·001) and allelic model (C vs T: OR = 1·35; 95%CI: 1·10-1·64; P = 0·003), as well as the results of rs2516839 polymorphisms: dominant model (GA+AA vs GG: OR = 1·77; 95%CI: 1·31-2·38; P < 0·001) and allelic model (G vs A: OR = 1·36; 95%CI: 1·13-1·63; P = 0·014), revealed that they may act as risk factors for PTC. CONCLUSION In this study, we found the SNPs of rs2516838 (mutant G alleles vs wild C alleles), rs3737787 (mutant T alleles vs wild C alleles) and rs2516839 (mutant A alleles vs wild G alleles) were significantly associated with PTC risk. Further large-scale studies with different ethnicities are still needed to validate our findings and explore the underlying mechanism of USF1 in PTC development.
Collapse
Affiliation(s)
- Qingzhong Yuan
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Qingao Bu
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Guoqiang Li
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Jun Zhang
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Tao Cui
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Rui Zhu
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Dongpo Mu
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
22
|
Horbach T, Götz C, Kietzmann T, Dimova EY. Protein kinases as switches for the function of upstream stimulatory factors: implications for tissue injury and cancer. Front Pharmacol 2015; 6:3. [PMID: 25741280 PMCID: PMC4332324 DOI: 10.3389/fphar.2015.00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/07/2015] [Indexed: 01/30/2023] Open
Abstract
The upstream stimulatory factors (USFs) are regulators of important cellular processes. Both USF1 and USF2 are supposed to have major roles in metabolism, tissue protection and tumor development. However, the knowledge about the mechanisms that control the function of USFs, in particular in tissue protection and cancer, is limited. Phosphorylation is a versatile tool to regulate protein functions. Thereby, phosphorylation can positively or negatively affect different aspects of transcription factor function including protein stability, protein-protein interaction, cellular localization, or DNA binding. The present review aims to summarize the current knowledge about the regulation of USFs by direct phosphorylation and the consequences for USF functions in tissue protection and cancer.
Collapse
Affiliation(s)
- Tina Horbach
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland ; Department of Chemistry, University of Kaiserslautern , Kaiserslautern, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University , Homburg, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| |
Collapse
|
23
|
Significant association between upstream transcription factor 1 rs2516839 polymorphism and hepatocellular carcinoma risk: a case–control study. Tumour Biol 2014; 36:2551-8. [DOI: 10.1007/s13277-014-2871-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022] Open
|
24
|
Horbach T, Chi TF, Götz C, Sharma S, Juffer AH, Dimova EY, Kietzmann T. GSK3β-dependent phosphorylation alters DNA binding, transactivity and half-life of the transcription factor USF2. PLoS One 2014; 9:e107914. [PMID: 25238393 PMCID: PMC4169611 DOI: 10.1371/journal.pone.0107914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/21/2014] [Indexed: 12/13/2022] Open
Abstract
The upstream stimulatory factor 2 (USF2) is a regulator of important cellular processes and is supposed to have also a role during tumor development. However, the knowledge about the mechanisms that control the function of USF2 is limited. The data of the current study show that USF2 function is regulated by phosphorylation and identified GSK3β as an USF2-phosphorylating kinase. The phosphorylation sites within USF2 could be mapped to serine 155 and threonine 230. In silico analyses of the 3-dimensional structure revealed that phosphorylation of USF2 by GSK3β converts it to a more open conformation which may influence transactivity, DNA binding and target gene expression. Indeed, experiments with GSK-3β-deficient cells revealed that USF2 transactivity, DNA binding and target gene expression were reduced upon lack of GSK3β. Further, experiments with USF2 variants mimicking GSK3β phosphorylated USF2 in GSK3β-deficient cells showed that phosphorylation of USF2 by GSK3β did not affect cell proliferation but increased cell migration. Together, this study reports a new mechanism by which USF2 may contribute to cancerogenesis.
Collapse
Affiliation(s)
- Tina Horbach
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Chemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Tabughang Franklin Chi
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Satyan Sharma
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - André H. Juffer
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Elitsa Y. Dimova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
25
|
Li J, Xu YH, Lu Y, Ma XP, Chen P, Luo SW, Jia ZG, Liu Y, Guo Y. Identifying differentially expressed genes and small molecule drugs for prostate cancer by a bioinformatics strategy. Asian Pac J Cancer Prev 2014; 14:5281-6. [PMID: 24175814 DOI: 10.7314/apjcp.2013.14.9.5281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Prostate cancer caused by the abnormal disorderly growth of prostatic acinar cells is the most prevalent cancer of men in western countries. We aimed to screen out differentially expressed genes (DEGs) and explore small molecule drugs for prostate cancer. MATERIALS AND METHODS The GSE3824 gene expression profile of prostate cancer was downloaded from Gene Expression Omnibus database which including 21 normal samples and 18 prostate cancer cells. The DEGs were identified by Limma package in R language and gene ontology and pathway enrichment analyses were performed. In addition, potential regulatory microRNAs and the target sites of the transcription factors were screened out based on the molecular signature database. In addition, the DEGs were mapped to the connectivity map database to identify potential small molecule drugs. RESULTS A total of 6,588 genes were filtered as DEGs between normal and prostate cancer samples. Examples such as ITGB6, ITGB3, ITGAV and ITGA2 may induce prostate cancer through actions on the focal adhesion pathway. Furthermore, the transcription factor, SP1, and its target genes ARHGAP26 and USF1 were identified. The most significant microRNA, MIR-506, was screened and found to regulate genes including ITGB1 and ITGB3. Additionally, small molecules MS-275, 8-azaguanine and pyrvinium were discovered to have the potential to repair the disordered metabolic pathways, abd furthermore to remedy prostate cancer. CONCLUSIONS The results of our analysis bear on the mechanism of prostate cancer and allow screening for small molecular drugs for this cancer. The findings have the potential for future use in the clinic for treatment of prostate cancer.
Collapse
Affiliation(s)
- Jian Li
- Department of Urology, the 452nd Hospital of PLA, Chengdu, China E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
p53 requires the stress sensor USF1 to direct appropriate cell fate decision. PLoS Genet 2014; 10:e1004309. [PMID: 24831529 PMCID: PMC4022457 DOI: 10.1371/journal.pgen.1004309] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/02/2014] [Indexed: 11/19/2022] Open
Abstract
Genomic instability is a major hallmark of cancer. To maintain genomic integrity, cells are equipped with dedicated sensors to monitor DNA repair or to force damaged cells into death programs. The tumor suppressor p53 is central in this process. Here, we report that the ubiquitous transcription factor Upstream Stimulatory factor 1 (USF1) coordinates p53 function in making proper cell fate decisions. USF1 stabilizes the p53 protein and promotes a transient cell cycle arrest, in the presence of DNA damage. Thus, cell proliferation is maintained inappropriately in Usf1 KO mice and in USF1-deficient melanoma cells challenged by genotoxic stress. We further demonstrate that the loss of USF1 compromises p53 stability by enhancing p53-MDM2 complex formation and MDM2-mediated degradation of p53. In USF1-deficient cells, the level of p53 can be restored by the re-expression of full-length USF1 protein similarly to what is observed using Nutlin-3, a specific inhibitor that prevents p53-MDM2 interaction. Consistent with a new function for USF1, a USF1 truncated protein lacking its DNA-binding and transactivation domains can also restore the induction and activity of p53. These findings establish that p53 function requires the ubiquitous stress sensor USF1 for appropriate cell fate decisions in response to DNA-damage. They underscore the new role of USF1 and give new clues of how p53 loss of function can occur in any cell type. Finally, these findings are of clinical relevance because they provide new therapeutic prospects in stabilizing and reactivating the p53 pathway. Cancer is a complex disease that is characterized by the sequential accumulation of genetic mutations. Exposure to environmental agents, such as solar ultraviolet, induces such alterations and thus contributes to the development of genomic instability. The tumor suppressor p53 has a central role in orchestrating cellular responses to genotoxic stress. In response to DNA-damage, p53 is stabilized and activated to direct cell fate decisions. Cells in which p53 stabilization is compromised become more vulnerable to mutagenic agents and hence the mutation rate increases, which promotes tumor development. Stabilization of p53 is thus a critical step towards cancer prevention. Using a genetic approach, we demonstrate that the ubiquitous transcription factor Upstream Stimulatory factor 1 (USF1) is required for immediate p53 stabilization and appropriate cell fate decisions following genotoxic stress. Furthermore, we show that this involves a novel function of USF1 that underscores its critical role as a stress sensor. The loss of USF1 expression should thus be considered as a potential initiator of tumorigenesis in the context of environmental insults.
Collapse
|
27
|
Karam M, Thenoz M, Capraro V, Robin JP, Pinatel C, Lancon A, Galia P, Sibon D, Thomas X, Ducastelle-Lepretre S, Nicolini F, El-Hamri M, Chelghoun Y, Wattel E, Mortreux F. Chromatin redistribution of the DEK oncoprotein represses hTERT transcription in leukemias. Neoplasia 2014; 16:21-30. [PMID: 24563617 PMCID: PMC3927101 DOI: 10.1593/neo.131658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 12/30/2022]
Abstract
Although numerous factors have been found to modulate hTERT transcription, the mechanism of its repression in certain leukemias remains unknown. We show here that DEK represses hTERT transcription through its enrichment on the hTERT promoter in cells from chronic and acute myeloid leukemias, chronic lymphocytic leukemia, but not acute lymphocytic leukemias where hTERT is overexpressed. We isolated DEK from the hTERT promoter incubated with nuclear extracts derived from fresh acute myelogenous leukemia (AML) cells and from cells expressing Tax, an hTERT repressor encoded by the human T cell leukemia virus type 1. In addition to the recruitment of DEK, the displacement of two potent known hTERT transactivators from the hTERT promoter characterized both AML cells and Tax-expressing cells. Reporter and chromatin immunoprecipitation assays permitted to map the region that supports the repressive effect of DEK on hTERT transcription, which was proportionate to the level of DEK-promoter association but not with the level of DEK expression. Besides hTERT repression, this context of chromatin redistribution of DEK was found to govern about 40% of overall transcriptional modifications, including those of cancer-prone genes. In conclusion, DEK emerges as an hTERT repressor shared by various leukemia subtypes and seems involved in the deregulation of numerous genes associated with leukemogenesis.
Collapse
Affiliation(s)
- Maroun Karam
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Morgan Thenoz
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Valérie Capraro
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Jean-Philippe Robin
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Christiane Pinatel
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Agnès Lancon
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Perrine Galia
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - David Sibon
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
- Service d'Hématologie Adultes, Hôpital Necker-Enfants Malades, Paris, France
| | - Xavier Thomas
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Sophie Ducastelle-Lepretre
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Franck Nicolini
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Mohamed El-Hamri
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Youcef Chelghoun
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Eric Wattel
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Franck Mortreux
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| |
Collapse
|
28
|
Sookruksawong S, Pongsomboon S, Tassanakajon A. Genomic organization of the cytosolic manganese superoxide dismutase gene from the Pacific white shrimp, Litopenaeus vannamei, and its response to thermal stress. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1395-1405. [PMID: 23994278 DOI: 10.1016/j.fsi.2013.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/28/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
Cytosolic manganese superoxide dismutase (cMnSOD) is an important antioxidant enzyme which catalyzes the conversion of superoxides to oxygen and hydrogen peroxide in several organisms. In the Pacific white shrimp, Litopenaeus vannamei, three cMnSOD genes (LvcMnSOD1-3) have previously been characterized. Here, the genomic structure of LvcMnSOD2 and its mRNA expression in response to thermal stress was examined. Analysis of the nucleotide sequence demonstrated that LvcMnSOD2 is comprised of 2392 bp spanning from the ATG translation start site to the stop codon and contains six exons interrupted by five introns. The 5' region upstream of the LvcMnSOD2 gene contains several putative regulatory elements but lacks the accepted TATA sequence. The putative transcription factor binding elements that may be involved in LvcMnSOD2 mRNA expression level include activator protein-1 (AP-1), cAMP response element binding protein (CREB), upstream stimulatory factor (USF), CAAT-enhancer binding protein (C/EBP), nuclear factor-κB (NF-κB) and heat shock regulatory element (HSE). In addition, we compared the 5' upstream sequences of the LvcMnSOD2 gene between two shrimp strains that are resistant or susceptible to Taura syndrome virus (TSV), respectively, which revealed the absence of the USF and C/EBP elements at positions -2125 and -1986, respectively, in the TSV-susceptible shrimp line. Moreover, genomic variations between the two shrimp strains were detected in some of the putative C/EBP, USF, HSE and NF-κB transcription factor binding elements. That these genomic variations might be involved in the TSV resistance as well as in stress responses remains to be evaluated. The presence of 15 putative HSEs suggests that the expression of LvcMnSOD2 is regulated under thermal stress. Here, we found that in response to a 1 or 3 h thermal stress (35 °C), the mRNA expression levels of LvcMnSOD2 were significantly increased and then gradually decreased in the recovering phase at room temperature (25 °C) to control levels by 3 h after the heat shock. Thus, the antioxidant system may be induced to protect cells from the oxidative damage caused by thermal stress. The genomic organization of LvcMnSOD2 likely provides a clue to the mechanisms that might regulate the antioxidant defense pathway in shrimps and so potentially in marine invertebrates.
Collapse
Affiliation(s)
- Suchonma Sookruksawong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand; Biotechnology Program, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | | | | |
Collapse
|
29
|
Upstream stimulatory factor 2 and hypoxia-inducible factor 2α (HIF2α) cooperatively activate HIF2 target genes during hypoxia. Mol Cell Biol 2012; 32:4595-610. [PMID: 22966206 DOI: 10.1128/mcb.00724-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While the functions of hypoxia-inducible factor 1α (HIF1α)/aryl hydrocarbon receptor nuclear translocator (ARNT) and HIF2α/ARNT (HIF2) proteins in activating hypoxia-inducible genes are well established, the role of other transcription factors in the hypoxic transcriptional response is less clear. We report here for the first time that the basic helix-loop-helix-leucine-zip transcription factor upstream stimulatory factor 2 (USF2) is required for the hypoxic transcriptional response, specifically, for hypoxic activation of HIF2 target genes. We show that inhibiting USF2 activity greatly reduces hypoxic induction of HIF2 target genes in cell lines that have USF2 activity, while inducing USF2 activity in cells lacking USF2 activity restores hypoxic induction of HIF2 target genes. Mechanistically, USF2 activates HIF2 target genes by binding to HIF2 target gene promoters, interacting with HIF2α protein, and recruiting coactivators CBP and p300 to form enhanceosome complexes that contain HIF2α, USF2, CBP, p300, and RNA polymerase II on HIF2 target gene promoters. Functionally, the effect of USF2 knockdown on proliferation, motility, and clonogenic survival of HIF2-dependent tumor cells in vitro is phenocopied by HIF2α knockdown, indicating that USF2 works with HIF2 to activate HIF2 target genes and to drive HIF2-depedent tumorigenesis.
Collapse
|
30
|
Hu J, Stiehl DP, Setzer C, Wichmann D, Shinde DA, Rehrauer H, Hradecky P, Gassmann M, Gorr TA. Interaction of HIF and USF signaling pathways in human genes flanked by hypoxia-response elements and E-box palindromes. Mol Cancer Res 2011; 9:1520-36. [PMID: 21984181 DOI: 10.1158/1541-7786.mcr-11-0090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rampant activity of the hypoxia-inducible factor (HIF)-1 in cancer is frequently associated with the malignant progression into a harder-to-treat, increasingly aggressive phenotype. Clearly, anti-HIF strategies in cancer cells are of considerable clinical interest. One way to fine-tune, or inhibit, HIF's transcriptional outflow independently of hydroxylase activities could be through competing transcription factors. A CACGTG-binding activity in human hepatoma cells was previously found to restrict HIF's access to hypoxia response cis-elements (HRE) in a Daphnia globin gene promoter construct (phb2). The CACGTG factor, and its impact on hypoxia-responsive human genes, was analyzed in this study by genome-wide computational scans as well as gene-specific quantitative PCR, reporter and DNA-binding assays in hepatoma (Hep3B), cervical carcinoma (HeLa), and breast carcinoma (MCF7) cells. Among six basic helix-loop-helix transcription factors known to target CACGTG palindromes, we identified upstream stimulatory factor (USF)-1/2 as predominant phb2 CACGTG constituents in Hep3B, HeLa, and MCF7 cells. Human genes with adjacent or overlapping HRE and CACGTG motifs included with lactate dehydrogenase A (LDHA) and Bcl-2/E1B 19 kDa interacting protein 3 (BNIP3) hypoxia-induced HIF-1 targets. Parallel recruitment of HIF-1α and USF1/2a to the respective promoter chromatin was verified for all cell lines investigated. Mutual complementing (LDHA) or moderating (BNIP3) cross-talk was seen upon overexpression or silencing of HIF-1α and USF1/2a. Distinct (LDHA) or overlapping (BNIP3) promoter-binding sites for HIF-1 and USFs were subsequently characterized. We propose that, depending on abundance or activity of its protein constituents, O(2)-independent USF signaling can function to fine-tune or interfere with HIF-mediated transcription in cancer cells.
Collapse
Affiliation(s)
- Junmin Hu
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gladych M, Wojtyla A, Rubis B. Human telomerase expression regulation. Biochem Cell Biol 2011; 89:359-76. [DOI: 10.1139/o11-037] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Since telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells, it has become a very promising target for anti-cancer therapy. A correlation between short telomere length and increased mortality was revealed in many studies. The telomerase expression/activity appears to be one of the most crucial factors to study to improve cancer therapy and prevention. However, this multisubunit enzymatic complex can be regulated at various levels. Thus, several strategies have been proposed to control telomerase in cancer cells such as anti-sense technology against TR and TERT, ribozymes against TERT, anti-estrogens, progesterone, vitamin D, retinoic acid, quadruplex stabilizers, telomere and telomerase targeting agents, modulation of interaction with other proteins involved in the regulation of telomerase and telomeres, etc. However, the transcription control of key telomerase subunits seems to play the crucial role in whole complexes activity and cancer cells immortality. Thus, the research of telomerase regulation can bring significant insight into the knowledge concerning stem cells metabolism but also ageing. This review summarizes the current state of knowledge of numerous telomerase regulation mechanisms at the transcription level in human that might become attractive anti-cancer therapy targets.
Collapse
Affiliation(s)
- Marta Gladych
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| | - Aneta Wojtyla
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| | - Blazej Rubis
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| |
Collapse
|
32
|
Chiu CC, Lin CY, Lee LY, Chen YJ, Lu YC, Wang HM, Liao CT, Chang JTC, Cheng AJ. Molecular chaperones as a common set of proteins that regulate the invasion phenotype of head and neck cancer. Clin Cancer Res 2011; 17:4629-41. [PMID: 21642380 DOI: 10.1158/1078-0432.ccr-10-2107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The goal of this study was to establish a common set of molecules that regulate cell invasion in head and neck cancer (HNC). EXPERIMENTAL DESIGN Five invasive sublines derived from HNC cell lines were established using the Matrigel selection method. Proteomic technology, MetaCore algorithm, and reverse transcriptase-PCR methods were used to search for molecules that contribute to the invasion phenotype. Cellular functional analyses and clinical association studies were applied to examine the significance of the molecules. RESULTS Fifty-two proteins were identified in more than two of the four independent proteomic experiments, including 10 (19%) molecular chaperones. Seven chaperones were confirmed to be differentially expressed in five sublines, Hsp90α, Hsp90β, Hsp90-B1/Gp96, Hsp70-A5/Grp78, and HYOU1, that upregulate, whereas Hsp60 and glucosidase-α neutral AB (GANAB) downregulate. Four molecules were further investigated. In all cell lines, knockdown of Hsp60 or GANAB and silencing of Gp96 or Grp78 considerably enhanced or reduced cell migration and invasion, respectively. Clinical association studies consistently revealed that low levels of Hsp60 or GANAB and high levels of Gp96 or Grp78 are significantly associated with advanced cancer (P < 0.001 to P = 0.047, respectively, for the four molecules) and poor survival (P < 0.001 to P = 0.025, respectively, for the four molecules). CONCLUSION Our study defined molecular chaperones as a common set of proteins that regulate the invasion phenotype of HNC. Loss of the tumor suppression function of Hsp60 or GANAB and acquisition of the oncogenic function of Gp96 or Grp78 contribute to aggressive cancers. These molecules may serve as prognostic markers and targets for cancer drug development.
Collapse
Affiliation(s)
- Ching-Chi Chiu
- Department of Medical Biotechnology, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jiang S, Galindo MR, Jarrett HW. Purification and identification of a transcription factor, USF-2, binding to E-box element in the promoter of human telomerase reverse transcriptase (hTERT). Proteomics 2010; 10:203-11. [PMID: 19899074 DOI: 10.1002/pmic.200800693] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Controversy remains about the identity of the transcription factor(s) (TFs), which bind to the two E-box elements (CACGTG, proximal and distal) of the human telomerase (hTERT) gene promoter, the essential elements in the regulation of telomerase. Here, systematic oligonucleotide trapping supplemented with 2-DE and proteomic methods was used to identify E-box binding TFs. Although insufficient purity was obtained from the proximal E-box element trapping, further fractionation provided by 2-DE and specific identification from Southwestern blotting analysis allow us to clearly identify an E-box binding TF. The protein spot was cut from 2-DE and in-gel digested with trypsin for LC-nanospray ESI-MS/MS analysis. This identified upstream stimulatory factor 2 (USF2). Western blotting analysis with specific antibodies clearly shows USF2 present in the purified fraction and USF2 antibody supershifts the specific DNA-binding complex on non-denaturing gels. Furthermore, a novel method was developed in which the specific DNA-TF complex was separated on a non-denaturing gel, the band was cut and applied to SDS-PAGE for a second dimension. Western blots of this second gel also confirmed the presence of USF2.
Collapse
Affiliation(s)
- Shoulei Jiang
- Department of Chemistry, University of Texas San Antonio, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
34
|
Bussière FI, Michel V, Mémet S, Avé P, Vivas JR, Huerre M, Touati E. H. pylori-induced promoter hypermethylation downregulates USF1 and USF2 transcription factor gene expression. Cell Microbiol 2010; 12:1124-33. [PMID: 20180799 DOI: 10.1111/j.1462-5822.2010.01457.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Helicobacter pylori infection is associated with the development of gastric adenocarcinoma. Upstream stimulatory factors USF1 and USF2 regulate the transcription of genes related to immune response, cell cycle and cell proliferation. A decrease in their expression is observed in human gastric epithelial cells infected with H. pylori, associated to a lower binding to their DNA E-box recognition site as shown by electrophoretic mobility shift assay. DNA methylation leads to gene silencing. The treatment of cells with 5'-azacytidine, an inhibitor of DNA methylation, restored the USF1 and USF2 gene expression in the presence of infection. Using promoter PCR methylation assay, a DNA hypermethylation was shown in the promoter region of USF1 and USF2 genes, in infected cells. The inhibition of USF1 and USF2 expression by H. pylori and the DNA hypermethylation in their gene promoter region was confirmed in gastric tissues isolated from 12 to 18 months infected mice. Our study demonstrated the involvement of USF1 and USF2 as molecular targets of H. pylori and the key role of DNA methylation in their regulation. These mechanisms occurred in the context of metaplastic lesions, suggesting that alteration of USF1 and USF2 levels could participate in the promotion of neoplastic process during H. pylori infection.
Collapse
|
35
|
NFX1-123 increases hTERT expression and telomerase activity posttranscriptionally in human papillomavirus type 16 E6 keratinocytes. J Virol 2009; 83:6446-56. [PMID: 19369336 DOI: 10.1128/jvi.02556-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-risk human papillomavirus (HPV) E6 protein induces telomerase activity through transcriptional activation of hTERT, the catalytic subunit of telomerase. HPV type 16 (HPV16) E6 interacts with two splice variants of NFX1 to increase hTERT expression. NFX1-91 is a transcriptional repressor of hTERT that is polyubiquitinated and targeted for degradation by HPV16 E6 in concert with E6-associated protein. We previously showed that NFX1-123 augments hTERT expression through binding to cytoplasmic poly(A) binding proteins (PABPCs). In this study, we determined that unlike NFX1-91, NFX1-123 is a cytoplasmic protein that colocalized with PABPCs but does not shuttle with PABPCs between the nucleus and cytoplasm. NFX1-123 requires both its PAM2 motif, with which it binds PABPCs, and its R3H domain, which has putative nucleic acid binding capabilities, to increase hTERT mRNA levels and telomerase activity in keratinocytes expressing HPV16 E6. In keratinocytes expressing HPV16 E6 and overexpressing NFX1-123, there was increased protein expression from in vitro-transcribed RNA fused with the 5' untranslated region (5' UTR) of hTERT. This posttranscriptional increase in expression required the PAM2 motif and R3H domain of NFX1-123 as well as the coexpression of HPV16 E6. NFX1-123 bound endogenous hTERT mRNA and increased its stability in HPV16 E6-expressing human foreskin keratinocytes, and NFX1-123 increased the stability of in vitro-transcribed RNA fused with the 5' UTR of hTERT. Together, these studies describe the first evidence of posttranscriptional regulation of hTERT, through the direct interaction of the cytoplasmic protein NFX1-123 with hTERT mRNA, in HPV16 E6-expressing keratinocytes.
Collapse
|
36
|
Deville L, Hillion J, Ségal-Bendirdjian E. Telomerase regulation in hematological cancers: a matter of stemness? Biochim Biophys Acta Mol Basis Dis 2009; 1792:229-39. [PMID: 19419697 DOI: 10.1016/j.bbadis.2009.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 01/30/2009] [Accepted: 01/30/2009] [Indexed: 01/02/2023]
Abstract
Human telomerase is a nuclear ribonucleoprotein enzyme complex that catalyzes the synthesis and extension of telomeric DNA. This enzyme is highly expressed and active in most malignant tumors while it is usually not or transiently detectable in normal somatic cells, suggesting that it plays an important role in cellular immortalization and tumorigenesis. As most leukemic cells are generally telomerase-positive and have often shortened telomeres, our understanding of how telomerase is deregulated in these diseases could help to define novel therapies targeting the telomere/telomerase complex. Nonetheless, considering that normal hematopoietic stem cells and some of their progeny do express a functional telomerase, it is tempting to consider such an activity in leukemias as a sustained stemness feature and important to understand how telomere length and telomerase activity are regulated in the various forms of leukemias.
Collapse
Affiliation(s)
- Laure Deville
- INSERM UMR-S 685, Institut d'Hématologie, Hôpital Saint-Louis, 75475 Paris cedex 10, France
| | | | | |
Collapse
|
37
|
Telomere stability and telomerase in mesenchymal stem cells. Biochimie 2008; 90:33-40. [DOI: 10.1016/j.biochi.2007.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 09/10/2007] [Indexed: 01/25/2023]
|
38
|
Amir-Zilberstein L, Dikstein R. Interplay between E-box and NF-κB in Regulation of A20 Gene by DRB Sensitivity-inducing Factor (DSIF). J Biol Chem 2008; 283:1317-1323. [DOI: 10.1074/jbc.m706767200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Abstract
Telomeres are required to preserve genome integrity, chromosome stability, nuclear architecture and chromosome pairing during meiosis. Given that telomerase activity is limiting or absent in most somatic tissues, shortening of telomeres during development and aging is the rule. In vitro, telomere length operates as a mechanism to prevent uncontrolled cell growth and therefore defines the proliferation potential of a cell. In vitro, in somatic cells that have lost proliferation control, shortening of telomeres becomes the main source of genome instability leading to genetic or epigenetic changes that may allow cells to become immortal and to acquire tumor phenotypes. In vivo, mice models have indisputably shown both the protective and the promoting role of very short telomeres in cancer development. In humans, although telomere shortening and other types of telomere dysfunction probably contribute to the genome instability often detected in tumors, the specific contributions of such instability to the development of cancer remain largely undetermined.
Collapse
|
40
|
Bermudez Y, Ahmadi S, Lowell NE, Kruk PA. Vitamin E suppresses telomerase activity in ovarian cancer cells. ACTA ACUST UNITED AC 2007; 31:119-28. [PMID: 17335992 DOI: 10.1016/j.cdp.2006.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2006] [Indexed: 01/08/2023]
Abstract
BACKGROUND Dietary factors influence tumor formation and progression. Vitamin E is a dietary anti-oxidant capable of eliminating free radical damage, inducing apoptosis and decreasing oncogene expression. Therefore, Vitamin E may be a strong candidate for cancer prevention and/or chemotherapeutic intervention. Since telomerase, a ribonucleoprotein uniquely expressed in over 95% of cancers, plays an important role in cellular immortalization, cell growth and tumor progression, the present study investigated the effects of Vitamin E on telomerase activity in human ovarian cancer. METHODS Normal and malignant ovarian surface epithelial (OSE) cells were cultured with and without D-alpha tocopheryl acetate (Vitamin E). MTS and Western immunoblot assays were used to examine the effect of Vitamin E on cell growth, survival and cytotoxicity. PCR-ELISA, RT-PCR and luciferase reporter assays were performed to determine the effect of Vitamin E on telomerase activity. RESULTS Vitamin E suppressed endogenous telomerase activity in ovarian cancer cells, but had no similar effects in telomerase-negative normal OSE cells. Vitamin E also reduced hTERT-mRNA transcript levels and reduced hTERT promoter activity maximally targeting the -976 to -578bp promoter regions. In addition, Vitamin E improved cisplatin-mediated cytotoxicity as evidenced by reduced cancer cell growth and increased cleaved caspase 3 activity. In contrast, Vitamin E protected telomerase-negative OSE cells from cisplatin-mediated cytotoxicity as evidenced by decreased cleaved caspase 3 activity. CONCLUSION Our data suggest that, by suppressing telomerase activity, Vitamin E may be an important protective agent against ovarian cancer cell growth as well as a potentially effective therapeutic adjuvant.
Collapse
Affiliation(s)
- Yira Bermudez
- Department of Pathology and Cell Biology, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|