1
|
Dey S, Singh AK, Singh AK, Rawat K, Banerjee J, Agnihotri V, Upadhaya D. Critical pathways of oral squamous cell carcinoma: molecular biomarker and therapeutic intervention. Med Oncol 2022; 39:30. [DOI: 10.1007/s12032-021-01633-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
|
2
|
Persaud AK, Li J, Johnson JA, Seligson N, Sborov DW, Duah E, Cho YK, Wang D, Phelps MA, Hofmeister CC, Poi MJ. XRCC1‐mediated DNA repair is associated with progression‐free survival of multiple myeloma patients after autologous stem cell transplant. Mol Carcinog 2019; 58:2327-2339. [DOI: 10.1002/mc.23121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Avinash K. Persaud
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of PharmacyThe Ohio State University Columbus Ohio
| | - Junan Li
- Division of Pharmacy Practice and Science, College of PharmacyThe Ohio State University Columbus Ohio
- Comprehensive Cancer CenterThe Ohio State University Columbus Ohio
| | - Jasmine A. Johnson
- Division of Pharmacy Practice and Science, College of PharmacyThe Ohio State University Columbus Ohio
| | - Nathan Seligson
- Department of PharmacyThe Ohio State University Wexner Medical Center Columbus Ohio
| | - Douglas W. Sborov
- Division of Hematology and Hematologic MalignanciesUniversity of Utah—Huntsman Cancer Institute Salt Lake City Utah
| | - Ernest Duah
- Division of Pharmacy Practice and Science, College of PharmacyThe Ohio State University Columbus Ohio
| | - Yu Kyoung Cho
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of PharmacyThe Ohio State University Columbus Ohio
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of PharmacyUniversity of Florida Gainesville Florida
| | - Mitch A. Phelps
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of PharmacyThe Ohio State University Columbus Ohio
- Comprehensive Cancer CenterThe Ohio State University Columbus Ohio
| | - Craig C. Hofmeister
- Department of Hematology and OncologyWinship Cancer Institute of Emory University Atlanta Georgia
| | - Ming J. Poi
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of PharmacyThe Ohio State University Columbus Ohio
- Division of Pharmacy Practice and Science, College of PharmacyThe Ohio State University Columbus Ohio
- Department of PharmacyThe Ohio State University Wexner Medical Center Columbus Ohio
| |
Collapse
|
3
|
Hamid A, Petreaca B, Petreaca R. Frequent homozygous deletions of the CDKN2A locus in somatic cancer tissues. Mutat Res 2019; 815:30-40. [PMID: 31096160 DOI: 10.1016/j.mrfmmm.2019.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Here we present and describe data on homozygous deletions (HD) of human CDKN2 A and neighboring regions on the p arm of Chromosome 9 from cancer genome sequences deposited on the online Catalogue of Somatic Mutations in Cancer (COSMIC) database. Although CDKN2 A HDs have been previously described in many cancers, this is a pan-cancer report of these aberrations with the aim to map the distribution of the breakpoints. We find that HDs of this locus have a median range of 1,255,650bps. When the deletion breakpoints were mapped on both the telomere and centromere proximal sides of CDKN2A, most of the telomere proximal breakpoints concentrate to a narrow region of the chromosome which includes the gene MTAP.. The centromere proximal breakpoints of the deletions are distributed over a wider chromosomal region. Furthermore, gene expression analysis shows that the deletions that include the CDKN2A region also include the MTAP region and this observation is tissue independent. We propose a model that may explain the origin of the telomere proximal CDKN2A breakpoints Finally, we find that HD distributions for at least three other loci, RB1, SMAD4 and PTEN are also not random.
Collapse
Affiliation(s)
- Abdulaziz Hamid
- The Ohio State University, MSE110A, 1464 Mount Vernon Ave, Marion, OH 43302, United States
| | - Beniamin Petreaca
- The Ohio State University, MSE110A, 1464 Mount Vernon Ave, Marion, OH 43302, United States
| | - Ruben Petreaca
- The Ohio State University, MSE110A, 1464 Mount Vernon Ave, Marion, OH 43302, United States.
| |
Collapse
|
4
|
Polymorphism inANRILis associated with relapse in patients with multiple myeloma after autologous stem cell transplant. Mol Carcinog 2017; 56:1722-1732. [DOI: 10.1002/mc.22626] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/18/2016] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
|
5
|
Knobloch TJ, Uhrig LK, Pearl DK, Casto BC, Warner BM, Clinton SK, Sardo-Molmenti CL, Ferguson JM, Daly BT, Riedl K, Schwartz SJ, Vodovotz Y, Buchta AJ, Schuller DE, Ozer E, Agrawal A, Weghorst CM. Suppression of Proinflammatory and Prosurvival Biomarkers in Oral Cancer Patients Consuming a Black Raspberry Phytochemical-Rich Troche. Cancer Prev Res (Phila) 2016; 9:159-71. [PMID: 26701664 PMCID: PMC4764140 DOI: 10.1158/1940-6207.capr-15-0187] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/11/2015] [Indexed: 01/06/2023]
Abstract
Black raspberries (BRB) demonstrate potent inhibition of aerodigestive tract carcinogenesis in animal models. However, translational clinical trials evaluating the ability of BRB phytochemicals to impact molecular biomarkers in the oral mucosa remain limited. The present phase 0 study addresses a fundamental question for oral cancer food-based prevention: Do BRB phytochemicals successfully reach the targeted oral tissues and reduce proinflammatory and antiapoptotic gene expression profiles? Patients with biopsy-confirmed oral squamous cell carcinomas (OSCC) administered oral troches containing freeze-dried BRB powder from the time of enrollment to the date of curative intent surgery (13.9 ± 1.27 days). Transcriptional biomarkers were evaluated in patient-matched OSCCs and noninvolved high at-risk mucosa (HARM) for BRB-associated changes. Significant expression differences between baseline OSCC and HARM tissues were confirmed using a panel of genes commonly deregulated during oral carcinogenesis. Following BRB troche administration, the expression of prosurvival genes (AURKA, BIRC5, EGFR) and proinflammatory genes (NFKB1, PTGS2) were significantly reduced. There were no BRB-associated grade 3-4 toxicities or adverse events, and 79.2% (N = 30) of patients successfully completed the study with high levels of compliance (97.2%). The BRB phytochemicals cyanidin-3-rutinoside and cyanidin-3-xylosylrutinoside were detected in all OSCC tissues analyzed, demonstrating that bioactive components were successfully reaching targeted OSCC tissues. We confirmed that hallmark antiapoptotic and proinflammatory molecular biomarkers were overexpressed in OSCCs and that their gene expression was significantly reduced following BRB troche administration. As these molecular biomarkers are fundamental to oral carcinogenesis and are modifiable, they may represent emerging biomarkers of molecular efficacy for BRB-mediated oral cancer chemoprevention.
Collapse
Affiliation(s)
- Thomas J Knobloch
- The Ohio State University, Columbus, Ohio. Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio.
| | - Lana K Uhrig
- The Ohio State University, Columbus, Ohio. Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio
| | - Dennis K Pearl
- The Ohio State University, Columbus, Ohio. Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. Department of Statistics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio
| | - Bruce C Casto
- The Ohio State University, Columbus, Ohio. Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio
| | - Blake M Warner
- Department of Diagnostic Sciences, Oral and Maxillofacial Pathology, School of Dental Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Steven K Clinton
- The Ohio State University, Columbus, Ohio. Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. Division of Medical Oncology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Christine L Sardo-Molmenti
- The Ohio State University, Columbus, Ohio. Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jeanette M Ferguson
- The Ohio State University, Columbus, Ohio. Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio
| | | | - Kenneth Riedl
- The Ohio State University, Columbus, Ohio. Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. Department of Food Science and Technology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, Ohio
| | - Steven J Schwartz
- The Ohio State University, Columbus, Ohio. Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. Department of Food Science and Technology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, Ohio
| | - Yael Vodovotz
- The Ohio State University, Columbus, Ohio. Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. Department of Food Science and Technology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, Ohio
| | | | - David E Schuller
- The Ohio State University, Columbus, Ohio. Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. Division of Head and Neck Oncology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Enver Ozer
- The Ohio State University, Columbus, Ohio. Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. Division of Head and Neck Oncology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Amit Agrawal
- The Ohio State University, Columbus, Ohio. Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. Division of Head and Neck Oncology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Christopher M Weghorst
- The Ohio State University, Columbus, Ohio. Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio
| |
Collapse
|
6
|
Li Z, Ding S, Zhong Q, Li G, Zhang Y, Huang XC. Significance of MMP11 and P14(ARF) expressions in clinical outcomes of patients with laryngeal cancer. Int J Clin Exp Med 2015; 8:15581-15590. [PMID: 26629052 PMCID: PMC4658941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND To evaluate the association of MMP11 and P14(ARF) expression in laryngeal squamous cell carcinoma (LSCC) with clinical pathological characteristics and survival. METHODS The mRNA and protein levels for both genes were determined in 65 LSCC patients. A log-rank test and Cox models were used to compare survival among different groups. RESULTS The mRNA expressions of MMP11 and P14(ARF) were significantly different between LSCC and their corresponding adjacent tissues (All P < 0.001). The expressions of MMP11 and P14(ARF) were correlated with several clinical characteristics (All P < 0.05). Patients with low MMP11 and high P14(ARF) expression had significantly better survival compared with those with high MMP11 and low P14(ARF) expression, respectively (All P < 0.05). The patients with surgery only had significantly better survival than those with chemoradiotherapy (log rank: P = 0.016), particularly in patients with low MMP11 and high P14(ARF) expression (log rank: P = 0.006). Furthermore, multivariable analysis showed that patients with low MMP11 and high P14(ARF) expression alone had a significantly reduced risk of death compared with those with high MMP11 and low P14(ARF) expression. The reduced risk for overall death was pronounced for patients with low and high expression of both genes (HR, 0.2; 95% CI, 0.1-0.5) compared with any other co-expression status of both genes, particularly for patients with surgery only (HR, 0.1; 95% CI, 0.0-0.9). CONCLUSION These results suggest that altered expression of MMP11 and P14(ARF) in tumors may individually, or in combination, predict poor prognosis of LSCC, particularly for patients with surgery only.
Collapse
Affiliation(s)
- Zufei Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education Beijing 100730, China ; Department of Otolaryngology Head and Neck Surgery, Aerospace Center Hospital Beijing 100039, China
| | - Shuo Ding
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education Beijing 100730, China
| | - Qi Zhong
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education Beijing 100730, China
| | - Guojun Li
- Department of Head and Neck Surgery and Epidemiology, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Yang Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education Beijing 100730, China
| | - Xiaohong ChenZhigang Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education Beijing 100730, China
| |
Collapse
|
7
|
Expression Analysis of Genes Involved in the RB/E2F Pathway in Astrocytic Tumors. PLoS One 2015; 10:e0137259. [PMID: 26317630 PMCID: PMC4552853 DOI: 10.1371/journal.pone.0137259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/13/2015] [Indexed: 02/08/2023] Open
Abstract
Astrocytic gliomas, which are derived from glial cells, are considered the most common primary neoplasias of the central nervous system (CNS) and are histologically classified as low grade (I and II) or high grade (III and IV). Recent studies have shown that astrocytoma formation is the result of the deregulation of several pathways, including the RB/E2F pathway, which is commonly deregulated in various human cancers via genetic or epigenetic mechanisms. On the basis of the assumption that the study of the mechanisms controlling the INK4/ARF locus can help elucidate the molecular pathogenesis of astrocytic tumors, identify diagnostic and prognostic markers, and help select appropriate clinical treatments, the present study aimed to evaluate and compare methylation patterns using bisulfite sequencing PCR and evaluate the gene expression profile using real-time PCR in the genes CDKN2A, CDKN2B, CDC6, Bmi-1, CCND1, and RB1 in astrocytic tumors. Our results indicate that all the evaluated genes are not methylated independent of the tumor grade. However, the real-time PCR results indicate that these genes undergo progressive deregulation as a function of the tumor grade. In addition, the genes CDKN2A, CDKN2B, and RB1 were underexpressed, whereas CDC6, Bmi-1, and CCND1 were overexpressed; the increase in gene expression was significantly associated with decreased patient survival. Therefore, we propose that the evaluation of the expression levels of the genes involved in the RB/E2F pathway can be used in the monitoring of patients with astrocytomas in clinical practice and for the prognostic indication of disease progression.
Collapse
|
8
|
Xu XH, Liu Y, Li DJ, Hu J, Su J, Huang Q, Lu MQ, Yi F, Bao D, Fu YZ. Effect of shRNA-Mediated Gene Silencing of Bmi-1 Expression on Chemosensitivity of CD44+ Nasopharyngeal Carcinoma Cancer Stem-Like Cells. Technol Cancer Res Treat 2015; 15:NP27-39. [PMID: 26294655 DOI: 10.1177/1533034615599461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/18/2015] [Indexed: 12/19/2022] Open
Abstract
In this study, we investigate the effect of short hairpin RNA-mediated gene silencing of Bmi-1 expression on chemosensitivity of CD44(+) nasopharyngeal carcinoma cancer stem-like cells. The sequence-specific short hairpin RNA lentivirus targeting at human Bmi-1 was synthesized and used to infect CD44(+) nasopharyngeal cells that were sorted by flow cytometry. We also employed flow cytometry to detect transfection efficiency. Real-time polymerase chain reaction was used to detect Bmi-1 and its downstream repressor genes p16(INK4a) and p14(ARF) messenger RNA, while each protein expression level of Bmi-1, p16(INK4a), p14(ARF), and p53 was confirmed by Western blotting protocol. Tumor spheroid assay was used to evaluate the self-renewal capacity. 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay and colony formation assay were applied to detect proliferation capacity and colony-forming capacity under different concentrations of chemotherapeutic drugs 5-fluorouracil or cisplatin. Transwell cell migration and invasion assay were employed to observe migration and invasion capacity after cells were exposed to cisplatin for 24 hours. The constructed short hairpin RNA lentivirus targeting Bmi-1 gene successfully infected into the CD44(+) nasopharyngeal carcinoma cells and effectively inhibited the Bmi-1 messenger RNA and protein expression level, while the expression level of Bim-1 target genes, p16(INK4a), p14(ARF), and p53 was significantly increased (P < .05). Notably, the proliferation, colony formation, migration, and invasion capabilities of the sequence-specific short hairpin RNA lentivirus-infected CD44(+) nasopharyngeal carcinoma cells reduced significantly under chemotherapeutic treatments (P < .05). Our results indicated that Bmi-1 may play an important role in the chemosensitivity of CD44(+) nasopharyngeal carcinoma cancer stem-like cells. Bmi-1 may be a potential new target for the treatment of nasopharyngeal carcinoma displaying chemotherapy resistance.
Collapse
Affiliation(s)
- Xin-Hua Xu
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Yang Liu
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Dao-Jun Li
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Juan Hu
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Jin Su
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China
| | - Qiao Huang
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China
| | - Ming-Qian Lu
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China
| | - Fang Yi
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Dan Bao
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Yan-Zhi Fu
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| |
Collapse
|
9
|
Poi MJ, Knobloch TJ, Sears MT, Uhrig LK, Warner BM, Weghorst CM, Li J. Coordinated expression of cyclin-dependent kinase-4 and its regulators in human oral tumors. Anticancer Res 2014; 34:3285-3292. [PMID: 24982332 PMCID: PMC4183149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND/AIM While aberrant expression of cyclin-dependent kinase-4 (CDK4) has been found in squamous cell carcinoma of the head and neck (SCCHN), the associations between CDK4 and its regulators, namely, cyclin D1, cyclin E, gankyrin, SEI1, and BMI1 in gene expression remain to be explored. Herein we investigated the mRNA profiles of these oncogenes and their interrelations in different oral lesion tissues. MATERIALS AND METHODS Thirty SCCHN specimens and patient-matched high at-risk mucosa (HARM) and 16 healthy control specimens were subjected to quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses. RESULTS The mRNA levels of CDK4, cyclin D1, gankyrin, SEI1, BMI1 were significantly elevated in both HARM and SCCHN (in comparison with control specimens), and statistically significant correlations were found among these markers in gene expression. CONCLUSION Up-regulation of CDK4 and its regulators takes place in oral cancer progression in a coordinate manner, and HARM and SCCHN share a similar molecular signature within the CDK4-pRB pathway.
Collapse
Affiliation(s)
- Ming J Poi
- Department of Pharmacy, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, U.S.A Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A
| | - Thomas J Knobloch
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, U.S.A Comprehensive Cancer Center, The Ohio State University, Columbus, OH, U.S.A
| | - Marta T Sears
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, U.S.A
| | - Lana K Uhrig
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, U.S.A
| | - Blake M Warner
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, U.S.A College of Dentistry, The Ohio State University, Columbus, OH, U.S.A
| | - Christopher M Weghorst
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, U.S.A Comprehensive Cancer Center, The Ohio State University, Columbus, OH, U.S.A Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, U.S.A
| | - Junan Li
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, U.S.A Comprehensive Cancer Center, The Ohio State University, Columbus, OH, U.S.A
| |
Collapse
|