1
|
Zhang J, Dong Y, Di S, Xie S, Fan B, Gong T. Tumor associated macrophages in esophageal squamous carcinoma: Promising therapeutic implications. Biomed Pharmacother 2023; 167:115610. [PMID: 37783153 DOI: 10.1016/j.biopha.2023.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023] Open
Abstract
Esophageal squamous carcinoma (ESCC) is a prevalent and highly lethal malignant tumor, with a five-year survival rate of approximately 20 %. Tumor-associated macrophages (TAMs) are the most prominent immune cells in the tumor microenvironment (TME), comprising over 50 % of the tumor volume. TAMs can be polarized into two distinct phenotypes, M1-type and M2-type, through interactions with cancer cells. M2-type TAMs are more abundant than M1-type TAMs in the TME, contributing to tumor progression, such as tumor cell survival and the construction of an immunosuppressive environment. This review focuses on the role of TAMs in ESCC, including their polarization, impact on tumor proliferation, angiogenesis, invasion, migration, therapy resistance, and immunosuppression. In addition, we discuss the potential of targeting TAMs for clinical therapy in ESCC. A thorough comprehension of the molecular biology about TAMs is essential for the development of innovative therapeutic strategies to treat ESCC.
Collapse
Affiliation(s)
- Jiale Zhang
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China; Department of Thoracic Surgery, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yanxin Dong
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China; Department of Thoracic Surgery, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shouyin Di
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Shun Xie
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Boshi Fan
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China.
| | - Taiqian Gong
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Yin S, Zhao S, Li J, Liu K, Ma X, Zhang Z, Wang R, Tian J, Liu F, Song Y, Song M, Zhao R, Yang R, Lee MH, Dong Z. NUMA1 modulates apoptosis of esophageal squamous cell carcinoma cells through regulating ASK1-JNK signaling pathway. Cell Mol Life Sci 2023; 80:211. [PMID: 37462735 PMCID: PMC11071978 DOI: 10.1007/s00018-023-04854-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/30/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignancy worldwide with a low survival rate due to a lack of therapeutic targets. Here, our results showed that nuclear mitotic apparatus protein 1 (NUMA1) transcript and protein levels are significantly upregulated in ESCC patient samples and its high expression predicated poor prognosis. Knock-down of NUMA1 promoted cell apoptosis and suppressed cell proliferation and colony formation. By using cell-derived xenograft (CDX) and patient-derived xenograft (PDX) mice models, we found silencing the NUMA1 expression suppressed tumor progression. In addition, conditional knocking-out of NUMA1 reduced 4NQO-induced carcinogenesis in mice esophagus, which further confirmed the oncogenic role of NUMA1 in ESCC. Mechanistically, from the immunoprecipitation assay we revealed that NUMA1 interacted with GSTP1 and TRAF2, promoted the association of TRAF2 with GSTP1 while inhibited the interaction of TRAF2 and ASK1, thus to regulate sustained activation of JNK. In summary, our findings suggest that NUMA1 plays an important role during ESCC progression and it functions through regulating ASK1-MKK4-SAPK/JNK signaling pathway.
Collapse
Affiliation(s)
- Shuying Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Simin Zhao
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Li
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Xinli Ma
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Zihan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Rui Wang
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Jie Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Fangfang Liu
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
- Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanming Song
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Ran Yang
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.
- College of Korean Medicine, Dongshin University, Naju, Jeonnam, 58245, Republic of Korea.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
3
|
Wang X, Wei S, Li W, Wei X, Zhang C, Dai S, Ma M, Zhao L, Shan B. P-Hydroxylcinnamaldehyde induces tumor-associated macrophage polarization toward the M1 type by regulating the proteome and inhibits ESCC in vivo and in vitro. Int Immunopharmacol 2023; 119:110213. [PMID: 37137266 DOI: 10.1016/j.intimp.2023.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 05/05/2023]
Abstract
P-Hydroxylcinnamaldehyde (CMSP) was firstly isolated from Chinese medicine Cochinchinnamomordica seed (CMS) by our team and has been verified to have growth-inhibiting abilities in malignant tumors including esophageal squamous cell carcinoma (ESCC). However, the detailed mechanism of its function is still unclear. Tumor-associated macrophages (TAMs) are an essential component of the tumor microenvironment (TME), playing important roles in tumor growth, metastasis, angiogenesis, and epithelial-mesenchymal transition (EMT). In the present study, we found that the percentage of M1-like macrophages was significantly increased in TME of ESCC cell derivedxenograft tumor model after CMSP treatment, while the ratios of other immune cells showed relatively low variation. To confirm these results, we further examined the effect of CMSP on macrophage polarization in vitro. The results revealed that CMSP also could induce phorbol-12-myristate-13-acetate (PMA)-induced M0 macrophages from THP-1 and mouse peritoneal macrophages toward the M1-like macrophages. Furthermore, CMSP could exert anti-tumor effect through TAMs in vitro co-culture model, in addition, the growth inhibition effect of CMSP was partly abolished in macrophage depletion model. To determine the potential pathway of CMSP induced polarization, we used quantitative proteomics (label-free) technology to explore the proteomic changes under CMSP treatment. The results revealed that immune-activating protein and M1 macrophage biomarkers were significantly increased after CMSP treatment. More importantly, CMSP stimulated pathways related to M1 macrophage polarization, such as the NF-κB signaling pathway and Toll-like receptor pathway, indicating that CMSP might induce M1-type macrophage polarization through these pathways. In conclusion, CMSP can regulate immune microenvironment in vivo and induce TAM polarization toward the M1 type by promoting proteomic changes, and exert anti-tumor effect through TAMs.
Collapse
Affiliation(s)
- Xiaohan Wang
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang 050011, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang 050001, China
| | - Sisi Wei
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang 050011, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang 050001, China
| | - Wanzhao Li
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang 050011, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang 050001, China
| | - Xiaojian Wei
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang 050011, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang 050001, China
| | - Cong Zhang
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang 050011, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang 050001, China
| | - Suli Dai
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang 050011, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang 050001, China
| | - Ming Ma
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050021, China
| | - Lianmei Zhao
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang 050011, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang 050001, China.
| | - Baoen Shan
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang 050011, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang 050001, China.
| |
Collapse
|
4
|
Disruption of enhancer-driven S100A14 expression promotes esophageal carcinogenesis. Cancer Lett 2022; 545:215833. [DOI: 10.1016/j.canlet.2022.215833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/07/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022]
|
5
|
Xu QR, Tang J, Liao HY, Yu BT, He XY, Zheng YZ, Liu S. Long non-coding RNA MEG3 mediates the miR-149-3p/FOXP3 axis by reducing p53 ubiquitination to exert a suppressive effect on regulatory T cell differentiation and immune escape in esophageal cancer. J Transl Med 2021; 19:264. [PMID: 34140005 PMCID: PMC8212454 DOI: 10.1186/s12967-021-02907-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/24/2021] [Indexed: 01/27/2023] Open
Abstract
Background Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) has been implicated in the progression of esophageal cancer (EC). However, the specific mechanism of the involvement of MEG3 in EC development in relation to the regulation of immune escape remains uncertain. Thus, the aim of the current study was to investigate the effect of MEG3 on EC via microRNA-149-3p (miR-149-3p). Methods Gain- and loss-of-function experiments were initially performed in EC cells in addition to the establishment of a 4-nitroquinoline 1-oxide-induced EC mouse model aimed at evaluating the respective roles of forkhead box P3 (FOXP3), MEG3, miR-149-3p, mouse double minute 2 homolog (MDM2) and p53 in T cell differentiation and immune escape observed in EC. Results EC tissues were found to exhibit upregulated FOXP3 and MDM2 while MEG3, p53 and miR-149-3p were all downregulated. FOXP3 was confirmed to be a target gene of miR-149-3p with our data suggesting it reduced p53 ubiquitination and degradation by means of inhibiting MDM2. P53 was enriched in the promoter of miR-149-3p to upregulate miR-149-3p. The overexpression of MEG3, p53 or miR-149-3p or silencing FOXP3 was associated with a decline in CD25+FOXP3+CD4+ T cells, IL-10+CD4+ T cells and IL-4+CD4+ T cells in spleen tissues, IL-4, and IL-10 levels as well as C-myc, N-myc and Ki-67 expression in EC mice. Conclusion Collectively, MEG3 decreased FOXP3 expression and resulted in repressed regulatory T cell differentiation and immune escape in EC mice by upregulating miR-149-3p via MDM2-mediated p53. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02907-1.
Collapse
Affiliation(s)
- Qi-Rong Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Hong-Ying Liao
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityMedical University, No. 26, Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, Guangdong Province, P. R. China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xiang-Yuan He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yu-Zhen Zheng
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityMedical University, No. 26, Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, Guangdong Province, P. R. China.
| | - Sheng Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
6
|
Ma M, Zhang C, Xiang XH, Deng XQ, Dai SL, Wei SS, Zhang XM, Zhao LM, Liu YJ, Shan BE. p-Hydroxylcinnamaldehyde from cochinchinamomordica seed reverses resistance to TRAIL in human oesophageal squamous cell carcinoma via the activation of the p38 mitogen-activated protein kinase signalling pathway. Biomed Pharmacother 2019; 121:109611. [PMID: 31731196 DOI: 10.1016/j.biopha.2019.109611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Our previous studies have showed that p-Hydroxylcinnamaldehyde (CMSP) could induce the differentiation of ESCC cells via the cAMP-RhoA-MAPK signalling pathway, which suggests a new potential strategy for ESCC treatment. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in several tumour cells by binding to the death receptors DR4 and DR5. However, TRAIL has little effect on oesophageal squamous cell carcinoma (ESCC) cells due to the loss of the receptors. The present study determined the effect of CMSP, the firstly found chemical constituent of Cochinchinamomordica seed (CMS), on TRAIL-induced apoptosis and its mechanism in ESCC cells. METHODS MTS assays were performed to examine the CMSP- and TRAIL-mediated inhibition of ESCC cell growth. Flow cytometry and Hoechst 33258 staining assays were used to detect apoptosis in ESCC cells treated with CMSP combined with TRAIL. Western blotting was used to determine the effect of CMSP on the expression of p38, p-p38, DR4, DR5, Bid and caspase-3/8 in ESCC cells treated with CMSP combined with TRAIL. Additionally, immunodeficient Balb-c/null mouse model was used to determine the chemotherapeutic efficacy of CMSP and TRAIL against ESCC tumour xenograft growth in vivo. RESULTS We found that the combination of CMSP and TRAIL had a greater inhibitory effect on ESCC cell viability in vitro than CMSP or TRAIL alone. CMSP enhanced the TRAIL-induced apoptosis in ESCC cells by upregulating the expression of DR4 and DR5 via the p38 MAPK signalling pathway. Furthermore, the increased expression of DR4 and DR5 upon TRAIL-induced apoptosis in ESCC cells was mediated at least in part by subsequent caspase-3 and caspase-8 activation. Moreover, the in vivo model showed that tumour growth was significantly slower in CMSP and TRAIL combination-treated mice than in mice treated with CMSP or TRAIL alone. CONCLUSION Taken together, our findings indicate that CMSP as an extract from TCM, might be as a potential sensitizer of TRAIL and thus provide a novel strategy for the clinical treatment of ESCC.
Collapse
Affiliation(s)
- Ming Ma
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China; Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050021, China
| | - Cong Zhang
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Xiao-Han Xiang
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Xiao-Qing Deng
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Su-Li Dai
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Si-Si Wei
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Xiang-Mei Zhang
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Lian-Mei Zhao
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Yun-Jiang Liu
- Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Bao-En Shan
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| |
Collapse
|