1
|
Bi L, Wang X, Li J, Li W, Wang Z. Epigenetic modifications in early stage lung cancer: pathogenesis, biomarkers, and early diagnosis. MedComm (Beijing) 2025; 6:e70080. [PMID: 39991629 PMCID: PMC11843169 DOI: 10.1002/mco2.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
The integration of liquid biopsy with epigenetic markers offers significant potential for early lung cancer detection and personalized treatment. Epigenetic alterations, including DNA methylation, histone modifications, and noncoding RNA changes, often precede genetic mutations and are critical in cancer progression. In this study, we explore how liquid biopsy, combined with epigenetic markers, can provide early detection of lung cancer, potentially predicting onset up to 4 years before clinical diagnosis. We discuss the challenges of targeting epigenetic regulators, which could disrupt cellular balance if overexploited, and the need for maintaining key gene expressions in therapeutic applications. This review highlights the promise and challenges of using liquid biopsy and epigenetic markers for early-stage lung cancer diagnosis, with a focus on optimizing treatment strategies for personalized and precision medicine.
Collapse
Affiliation(s)
- Lingfeng Bi
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xin Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jiayi Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan UniversityChengduSichuanChina
- The Research Units of West China, Chinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan UniversityChengduSichuanChina
- The Research Units of West China, Chinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| |
Collapse
|
2
|
Yao Y, Li B, Chen C, Wang J, Yao F, Li Z. HVEM as a tumor-intrinsic regulator in non-small cell lung cancer: Suppression of metastasis via glycolysis inhibition and modulation of macrophage polarization. Pharmacol Res 2025; 213:107604. [PMID: 39832683 DOI: 10.1016/j.phrs.2025.107604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Herpes virus entry mediator (HVEM) is a novel costimulatory molecule which mediates stimulatory or inhibitory signals in immune responses which makes it an attractive target in cancer therapeutics. However, the role of tumor cell intrinsic HVEM on tumor biology remains largely unknown. In this study, We demonstrated that CK+HVEM+ tumor correlates with better survival using Multiplex immuno histochemistry (mIHC) in Human Lung Adenocarcinoma Tissue microarray. Next, we showed that HVEM knockdown promoted NSCLC cell invasion and metastasis in vitro whereas exhibited no effect on proliferation. Conversely, HVEM overexpression results in the opposite phenotype. Meanwhile, the conclusion were further confirmed in vivo experiment that overexpression of HVEM reduced the invasion and metastasis of NSCLC whereas no effect on tumor mass. Besides, vivo experiment showed that M1 TAMs in the HVEM overxrpression group was increased and the proportion of M2 macrophages was decreased compared to the vector group. Mechanistically, The C-terminal 228-283 amino acid segment of HVEM protein interacts with the N-terminal 1-383 amino acid segment of MPRIP protein, inhibiting its downstream glycolysis signaling pathway and suppressing NSCLC cells progression. In addition, macrophage coculture assay suggested that HVEM overexpression inhibited M2 macrophage polarization through GM-CSF/GM-CSFRα axis. In summary, our study has demonstrated that tumor cell intrinsic HVEM is a potential tumour metastasis suppressor, which may serve as a potential target for immunotherapy.
Collapse
MESH Headings
- Humans
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Animals
- Glycolysis
- Macrophages/metabolism
- Macrophages/immunology
- Cell Line, Tumor
- Male
- Neoplasm Metastasis
- Mice
- Female
- Mice, Nude
- Mice, Inbred BALB C
- Cell Movement
Collapse
Affiliation(s)
- Yuanshan Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Bin Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chunji Chen
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jing Wang
- Department of Thoracic Surgery, Huadong Hospital affiliated to Fudan University, Shanghai 200040, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai 200030, China.
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai 200030, China.
| |
Collapse
|
3
|
Liu Y, Lu T, Li R, Xu R, Baranenko D, Yang L, Xiao D. Discovery of Jaspamycin from marine-derived natural product based on MTA3 to inhibit hepatocellular carcinoma progression. Sci Rep 2024; 14:25294. [PMID: 39455636 PMCID: PMC11511890 DOI: 10.1038/s41598-024-75205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Studies have underscored the pivotal role of metastasis-associated protein 3 (MTA3) as a cancer regulator, yet its potential as a drug target across cancers necessitates comprehensive evaluation. In this study, we analyzed MTA3 expression profiles to ascertain its diagnostic and prognostic value in pan-cancers, probing associations with genetic variations and immunological characteristics. Notably, liver hepatocellular carcinoma (LIHC) exhibited the most significant correlation with MTA3. By transfection of siRNA, interference of MTA3 affected HepG2 and Hepa1-6 cell viability and migration. Through drug screening and drug-likeness evaluation among marine-derived natural products, Jaspamycin was identified as a potential hepatocellular carcinoma treatment by targeting MTA3. By applying in vitro and in vivo experiment, the inhibitory effects of Jaspamycin on hepatocellular carcinoma viability, migration, and tumor progression were observed. To assess the potential of MTA3 as an anticancer drug target, MTA3 overexpression plasmid was transfected together with Jaspamycin treatment, and observed that MTA3 upregulation counteracted the inhibitory effects of Jaspamycin on hepatocarcinoma cell proliferation and migration, underscoring the efficacy of MTA3 as a drug target in hepatocellular carcinoma drug screening. This study highlights the clinical significance of MTA3 in pan-cancer, particularly in hepatocellular carcinoma. Additionally, it identifies Jaspamycin, a marine-derived compound with promising pharmacological properties, as an effective inhibitor of MTA3 activity, suggesting its potential for hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Yihan Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150001, China
| | - Tong Lu
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Runze Li
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Rui Xu
- Cancer Hospital, Shenzhen Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, Guangdong, China
| | - Denis Baranenko
- School of Life Sciences, Faculty of Ecotechnologies, ITMO University, St. Petersburg, 197101, Russia
| | - Lida Yang
- Heilongjiang Nursing Collage, Harbin, Heilongjiang, 150086, China
| | - Dan Xiao
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, 450007, China.
- School of Medicine and Health, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
4
|
Tong X, Li C, Ma L, Wu D, Liu Y, Zhao L, Wang M. Potentially functional genetic variants in interferon regulatory factor family genes are associated with colorectal cancer survival. Mol Carcinog 2024; 63:1669-1681. [PMID: 38812445 DOI: 10.1002/mc.23752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Interferon regulatory factor (IRF) family genes play a critical role in colorectal cancer (CRC) development and impact patient survival. This study evaluated the influence of functional single nucleotide polymorphisms (SNPs) in IRF genes on CRC survival, including functional predictions and experimental validations. Multivariate Cox regression analysis identified three linked SNPs as significant survival predictors, with the rs141112353 T/T genotype in the 3'UTR region of IRF6 significantly associated with decreased survival (HR = 1.60, P = 6E-04). Expression quantitative trait loci (eQTL) analysis indicated that the rs141112353 TA > T alteration reduced IRF6 expression. Dual luciferase assays showed lower activity for the T allele in the presence of hsa-miR-548ap-3p. Data from The Cancer Genome Atlas (TCGA) and other databases confirmed lower IRF6 levels in CRC tissues, correlating with worse survival and inversely with M2 macrophage infiltration. In vitro, IRF6 overexpression inhibited CRC cell proliferation and M2 macrophage polarization by downregulating MIF expression. These findings suggest that the IRF6 rs141112353 TA > T variant significantly affects CRC survival, potentially by enhancing miR-548-ap-3p binding affinity.
Collapse
Affiliation(s)
- Xiaoxia Tong
- Experimental Research Center, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Chenghui Li
- Experimental Research Center, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Li Ma
- Experimental Research Center, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Di Wu
- Experimental Research Center, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yonglei Liu
- Experimental Research Center, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Liqin Zhao
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyun Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Lei P, Ju Y, Peng F, Luo J. Applications and advancements of CRISPR-Cas in the treatment of lung cancer. Front Cell Dev Biol 2023; 11:1295084. [PMID: 38188023 PMCID: PMC10768725 DOI: 10.3389/fcell.2023.1295084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
Lung cancer is one of the most malignant diseases and a major contributor to cancer-related deaths worldwide due to the deficiency of early diagnosis and effective therapy that are of great importance for patient prognosis and quality of life. Over the past decade, the advent of clustered regularly interspaced short palindromic repeats/CRISPR associated protein (CRISPR/Cas) system has significantly propelled the progress of both fundamental research and clinical trials of lung cancer. In this review, we review the current applications of the CRISPR/Cas system in diagnosis, target identification, and treatment resistance of lung cancer. Furthermore, we summarize the development of lung cancer animal models and delivery methods based on CRISPR system, providing novel insights into clinical diagnosis and treatment strategies of lung cancer.
Collapse
Affiliation(s)
- Pan Lei
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Yixin Ju
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Fenfen Peng
- Department of Pharmacy, Jianyang City Hospital of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Jianyang, Sichuan, China
| | - Jie Luo
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|