1
|
Peng Y, Zhu L, Bai Q, Wang L, Li Q. Associations between Thyroid Hormones and Cognitive Impairment in Patients with Parkinson's Disease. eNeuro 2024; 11:ENEURO.0239-24.2024. [PMID: 39288996 PMCID: PMC11457268 DOI: 10.1523/eneuro.0239-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/16/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
This study aims to explore the correlation of serum thyroid hormone levels to cognitive impairments in Parkinson's disease (PD) patients. In this retrospective study, 106 Chinese patients without cognitive impairments and 94 patients with cognitive impairments, including 55 with mild cognitive impairment (PD-MCI) and 39 with PD dementia (PDD), were analyzed. Clinical data regarding the PD assessments, including disease duration, Unified Parkinson's Disease Rating Scale (UPDRS) Part 3 scores, and Hoehn and Yahr (H-Y) staging, were analyzed. Cognitive functions were evaluated using the Montreal Cognitive Assessment score. Serum levels of thyroid-stimulating hormone (TSH), free thyroxine (FT4), and free triiodothyronine (FT3), were measured using ELISA. Significantly altered H-Y staging, disease duration, and UPDRS Part 3 scores were observed in PD patients with cognitive impairment compared with those without. Serum levels of FT3 were significantly decreased, while FT4 and TSH levels were significantly elevated in PD patients with cognitive impairment compared with those without. Combined detection of TSH, FT3, and FT4 showed value in distinguishing PD patients with and without cognitive impairment. Furthermore, a comparison of serum levels between PD-MCI and PDD patients revealed significant association between thyroid hormone levels and the degree of cognitive impairment in PD patients. Our findings suggest a relationship between changes in serum thyroid hormone levels and cognitive impairments in PD patients. Thyroid hormone levels, particularly FT3, may serve as potential markers for cognitive dysfunction in PD.
Collapse
Affiliation(s)
- Yingying Peng
- Departments of Neurology, Cangzhou Central Hospital, Cangzhou 061000, China
| | - Lan Zhu
- Departments of Neurology, Cangzhou Central Hospital, Cangzhou 061000, China
| | - Qingling Bai
- Neurosurgery, Cangzhou Central Hospital, Cangzhou 061000, China
| | - Limin Wang
- Departments of Neurology, Cangzhou Central Hospital, Cangzhou 061000, China
| | - Qian Li
- Departments of Neurology, Cangzhou Central Hospital, Cangzhou 061000, China
| |
Collapse
|
2
|
Jellinger KA. Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. Int J Mol Sci 2023; 25:498. [PMID: 38203667 PMCID: PMC10778722 DOI: 10.3390/ijms25010498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cognitive impairment (CI) is a characteristic non-motor feature of Parkinson disease (PD) that poses a severe burden on the patients and caregivers, yet relatively little is known about its pathobiology. Cognitive deficits are evident throughout the course of PD, with around 25% of subtle cognitive decline and mild CI (MCI) at the time of diagnosis and up to 83% of patients developing dementia after 20 years. The heterogeneity of cognitive phenotypes suggests that a common neuropathological process, characterized by progressive degeneration of the dopaminergic striatonigral system and of many other neuronal systems, results not only in structural deficits but also extensive changes of functional neuronal network activities and neurotransmitter dysfunctions. Modern neuroimaging studies revealed multilocular cortical and subcortical atrophies and alterations in intrinsic neuronal connectivities. The decreased functional connectivity (FC) of the default mode network (DMN) in the bilateral prefrontal cortex is affected already before the development of clinical CI and in the absence of structural changes. Longitudinal cognitive decline is associated with frontostriatal and limbic affections, white matter microlesions and changes between multiple functional neuronal networks, including thalamo-insular, frontoparietal and attention networks, the cholinergic forebrain and the noradrenergic system. Superimposed Alzheimer-related (and other concomitant) pathologies due to interactions between α-synuclein, tau-protein and β-amyloid contribute to dementia pathogenesis in both PD and dementia with Lewy bodies (DLB). To further elucidate the interaction of the pathomechanisms responsible for CI in PD, well-designed longitudinal clinico-pathological studies are warranted that are supported by fluid and sophisticated imaging biomarkers as a basis for better early diagnosis and future disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
3
|
Kratter IH, Karp JF, Chang YF, Whiteman AC, Feyder MT, Jorge A, Richardson RM, Henry LC. Association of Preoperative Visual Hallucinations With Cognitive Decline After Deep Brain Stimulation for Parkinson's Disease. J Neuropsychiatry Clin Neurosci 2022; 33:144-151. [PMID: 33203305 DOI: 10.1176/appi.neuropsych.20040077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is effective for the motor symptoms of Parkinson's disease (PD). Although most patients benefit with minimal cognitive side effects, cognitive decline is a risk, and there is little available evidence to guide preoperative risk assessment. Visual illusions or visual hallucinations (VHs) and impulse-control behaviors (ICBs) are relatively common complications of PD and its treatment and may be a marker of more advanced disease, but their relationship with postoperative cognition has not been established. The authors aimed to determine whether any preoperative history of VHs or ICBs is associated with cognitive change after DBS. METHODS Retrospective chart review identified 54 patients with PD who received DBS of the subthalamic nucleus or globus pallidus internus and who completed both pre- and postoperative neuropsychological testing. Linear regression models were used to assess whether any preoperative history of VHs or ICBs was associated with changes in attention, executive function, language, memory, or visuospatial cognitive domains while controlling for surgical target and duration between evaluations. RESULTS The investigators found that a history of VHs was associated with declines in attention (b=-4.04, p=0.041) and executive function (b=-4.24, p=0.021). A history of ICBs was not associated with any significant changes. CONCLUSIONS These results suggest that a history of VHs may increase risk of cognitive decline after DBS; thus, specific preoperative counseling and targeted remediation strategies for these patients may be indicated. In contrast, a history of ICBs does not appear to be associated with increased cognitive risk.
Collapse
Affiliation(s)
- Ian H Kratter
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh (Kratter, Karp); Department of Neurological Surgery, Brain Modulation Laboratory, University of Pittsburgh School of Medicine (Kratter, Chang, Whiteman, Feyder, Jorge, Henry); Department of Neurosurgery, Massachusetts General Hospital, Boston (Richardson); University of Arizona College of Medicine, Department of Psychiatry, Tucson (Karp); and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif. (Kratter)
| | - Jordan F Karp
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh (Kratter, Karp); Department of Neurological Surgery, Brain Modulation Laboratory, University of Pittsburgh School of Medicine (Kratter, Chang, Whiteman, Feyder, Jorge, Henry); Department of Neurosurgery, Massachusetts General Hospital, Boston (Richardson); University of Arizona College of Medicine, Department of Psychiatry, Tucson (Karp); and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif. (Kratter)
| | - Yue-Fang Chang
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh (Kratter, Karp); Department of Neurological Surgery, Brain Modulation Laboratory, University of Pittsburgh School of Medicine (Kratter, Chang, Whiteman, Feyder, Jorge, Henry); Department of Neurosurgery, Massachusetts General Hospital, Boston (Richardson); University of Arizona College of Medicine, Department of Psychiatry, Tucson (Karp); and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif. (Kratter)
| | - Ashley C Whiteman
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh (Kratter, Karp); Department of Neurological Surgery, Brain Modulation Laboratory, University of Pittsburgh School of Medicine (Kratter, Chang, Whiteman, Feyder, Jorge, Henry); Department of Neurosurgery, Massachusetts General Hospital, Boston (Richardson); University of Arizona College of Medicine, Department of Psychiatry, Tucson (Karp); and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif. (Kratter)
| | - Michael T Feyder
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh (Kratter, Karp); Department of Neurological Surgery, Brain Modulation Laboratory, University of Pittsburgh School of Medicine (Kratter, Chang, Whiteman, Feyder, Jorge, Henry); Department of Neurosurgery, Massachusetts General Hospital, Boston (Richardson); University of Arizona College of Medicine, Department of Psychiatry, Tucson (Karp); and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif. (Kratter)
| | - Ahmed Jorge
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh (Kratter, Karp); Department of Neurological Surgery, Brain Modulation Laboratory, University of Pittsburgh School of Medicine (Kratter, Chang, Whiteman, Feyder, Jorge, Henry); Department of Neurosurgery, Massachusetts General Hospital, Boston (Richardson); University of Arizona College of Medicine, Department of Psychiatry, Tucson (Karp); and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif. (Kratter)
| | - R Mark Richardson
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh (Kratter, Karp); Department of Neurological Surgery, Brain Modulation Laboratory, University of Pittsburgh School of Medicine (Kratter, Chang, Whiteman, Feyder, Jorge, Henry); Department of Neurosurgery, Massachusetts General Hospital, Boston (Richardson); University of Arizona College of Medicine, Department of Psychiatry, Tucson (Karp); and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif. (Kratter)
| | - Luke C Henry
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh (Kratter, Karp); Department of Neurological Surgery, Brain Modulation Laboratory, University of Pittsburgh School of Medicine (Kratter, Chang, Whiteman, Feyder, Jorge, Henry); Department of Neurosurgery, Massachusetts General Hospital, Boston (Richardson); University of Arizona College of Medicine, Department of Psychiatry, Tucson (Karp); and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif. (Kratter)
| |
Collapse
|
4
|
Apathy-Related Symptoms Appear Early in Parkinson's Disease. Healthcare (Basel) 2022; 10:healthcare10010091. [PMID: 35052255 PMCID: PMC8775593 DOI: 10.3390/healthcare10010091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/17/2021] [Accepted: 12/31/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Apathy, often-unrecognized in Parkinson's Disease (PD), adversely impacts quality-of-life (QOL) and may increase with disease severity. Identifying apathy early can aid treatment and enhance prognoses. Whether feelings related to apathy (e.g., loss of pleasure) are present in mild PD and how apathy and related feelings increase with disease severity is unknown. METHODS 120 individuals (M age: 69.0 ± 8.2 y) with mild (stages 1-2, n = 71) and moderate (stages 2.5-4; n = 49) PD were assessed for apathy and apathy-related constructs including loss of pleasure, energy, interest in people or activities, and sex. Correlations were used to determine the association of apathy with apathy-related constructs. Regression models, adjusted for age, cognitive status, and transportation, compared groups for prevalence of apathy and apathy-related feelings. RESULTS Apathy-related constructs and apathy were significantly correlated. Apathy was present in one in five participants with mild PD and doubled in participants with moderate PD. Except for loss of energy, apathy-related constructs were observed in mild PD at a prevalence of 41% or greater. Strong associations were noted between all apathy-related constructs and greater disease severity. After adjustment for transportation status serving as a proxy for independence, stage of disease remained significant only for loss of pleasure and loss of energy. CONCLUSION People with mild PD showed signs of apathy and apathy-related feelings. Loss of pleasure and energy are apathy-related feelings impacted by disease severity. Clinicians should consider evaluating for feelings related to apathy to enhance early diagnosis in individuals who might otherwise not exhibit psychopathology.
Collapse
|