1
|
Becerra GP, Rojas-Rodríguez F, Ramírez D, Loaiza AE, Tobar-Tosse F, Mejía SM, González J. Structural and functional computational analysis of nicotine analogs as potential neuroprotective compounds in Parkinson disease. Comput Biol Chem 2020; 86:107266. [PMID: 32388154 DOI: 10.1016/j.compbiolchem.2020.107266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 11/27/2022]
Abstract
As the mechanism of interaction between nicotinic receptors with nicotine analogs is not yet fully understood, information at molecular level obtained from computational calculations is needed. In this sense, this work is a computational study of eight nicotine analogs, all with pyrrolidine ring modifications over a nicotine-based backbone optimized with B3LYP-D3/aug-cc-pVDZ. A molecular characterization was performed focusing on geometrical parameters such as pseudo-rotation angles, atomic charges, HOMO and LUMO orbitals, reactivity indexes and intermolecular interactions. Three analogs, A2 (3-(1,3-dimethyl-4,5-dihydro-1h-pirazole-5-yl) pyridine), A3 (3-(3-methyl-4,5-dihydro-1H-pyrazol-5-yl)-pyridine) and A8 (5-methyl-3-(pyridine-3-yl)-4,5-dihydroisoxazole), were filtered suggesting putative neuroprotective activity taking into account different reactivity values, such as their lowest hardness: 2.37 eV (A8), 2.43 eV (A2) and 2.56 eV (A3), compared to the highest hardness value found: 2.71 eV for A5 (3-((2S,4R)-4-(fluoromethyl)-1-methylpyrrolidine-2-il) pyridine), similar to the value of nicotine (2.70 eV). Additionally, molecular docking of all 8 nicotine analogs with the α 7 nicotinic acetylcholine receptor (α 7 nAChR) was performed. High values of interaction between the receptor and the three nicotine analogs were obtained: A3 (-7.1 kcal/mol), A2 (-6.9 kcal/mol) and A8 (-6.8 kcal/mol); whereas the affinity energy of nicotine was -6.4 kcal/mol. Leu116 and Trp145 are key residues in the binding site of α 7 nAChR interacting with nicotine analogs. Therefore, based upon these results, possible application of these nicotine analogs as neuroprotective compounds and potential implication at the design of novel Parkinson's treatments is evidenced.
Collapse
Affiliation(s)
- Gina Paola Becerra
- Laboratorio de Bioquímica Computacional Estructural y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia; Laboratorio de Química Computacional, Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Felipe Rojas-Rodríguez
- Laboratorio de Bioquímica Computacional Estructural y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, El Llano Subercaseaux 2801-Piso 5, 8900000, Santiago, Chile
| | - Alix E Loaiza
- Laboratorio de Síntesis Orgánica, Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fabian Tobar-Tosse
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana Cali, Cali, Colombia
| | - Sol M Mejía
- Laboratorio de Química Computacional, Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - Janneth González
- Laboratorio de Bioquímica Computacional Estructural y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
2
|
Lewis PA, Plun-Favreau H, Rowley M, Spillane J. Pierre D. and the first photographs of Parkinson's disease. Mov Disord 2020; 35:389-391. [PMID: 31975439 PMCID: PMC7155099 DOI: 10.1002/mds.27965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 12/02/2022] Open
Affiliation(s)
- Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom.,Royal Veterinary College, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Helene Plun-Favreau
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | | | - Jennifer Spillane
- National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Guy's and St. Thomas' NHS Foundation Trust, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
3
|
Multisystem Lewy body disease and the other parkinsonian disorders. Nat Genet 2016; 47:1378-84. [PMID: 26620112 DOI: 10.1038/ng.3454] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/28/2015] [Indexed: 12/12/2022]
Abstract
Here we prioritize as multisystem Lewy body disease (MLBD) those genetic forms of Parkinson's disease that point the way toward a mechanistic understanding of the majority of sporadic disease. Pathological diagnosis of genetic subtypes offers the prospect of distinguishing different mechanistic trajectories with a common mutational etiology, differing outcomes from varying allelic bases, and those disease-associated variants that can be used in gene-environment analysis. Clearly delineating parkinsonian disorders into subclasses on the basis of molecular mechanisms with well-characterized outcome expectations is the basis for refining these forms of neurodegeneration as research substrate through the use of cell models derived from affected individuals while ensuring that clinically collected data can be used for therapeutic decisions and research without increasing the noise and confusion engendered by the collection of data against a range of historically defined criteria.
Collapse
|
4
|
Beilina A, Cookson MR. Genes associated with Parkinson's disease: regulation of autophagy and beyond. J Neurochem 2015. [PMID: 26223426 DOI: 10.1111/jnc.13266] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Substantial progress has been made in the genetic basis of Parkinson's disease (PD). In particular, by identifying genes that segregate with inherited PD or show robust association with sporadic disease, and by showing the same genes are found on both lists, we have generated an outline of the cause of this condition. Here, we will discuss what those genes tell us about the underlying biology of PD. We specifically discuss the relationships between protein products of PD genes and show that common links include regulation of the autophagy-lysosome system, an important way by which cells recycle proteins and organelles. We also discuss whether all PD genes should be considered to be in the same pathway and propose that in some cases the relationships are closer, whereas in other cases the interactions are more distant and might be considered separate. Beilina and Cookson review the links between genes for Parkinson's disease (red) and the autophagy-lysosomal system. They propose the hypothesis that many of the known PD genes can be assigned to pathways that affect (I) turnover of mitochondria via mitophagy (II) turnover of several vesicular structures via macroautophagy or chaperone-mediated autophagy or (III) general lysosome function. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Alexandra Beilina
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA.
| |
Collapse
|
5
|
Elble RJ. Defining dystonic tremor. Curr Neuropharmacol 2013; 11:48-52. [PMID: 23814537 PMCID: PMC3580791 DOI: 10.2174/157015913804999478] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/08/2012] [Accepted: 07/03/2012] [Indexed: 11/22/2022] Open
Abstract
A strong association between dystonia and tremor has been known for more than a century. Two forms of tremor in dystonia are currently recognized: 1) dystonic tremor, which is tremor produced by dystonic muscle contraction and 2) tremor associated with dystonia, which is tremor in a body part that is not dystonic, but there is dystonia elsewhere. Both forms of tremor in dystonia frequently resemble essential tremor or another pure tremor syndrome (e.g., isolated head and voice tremors and task-specific writing tremor), and relationships among these tremor disorders have long been debated. Misdiagnosis is common because mild dystonia is frequently overlooked in patients with tremor. It is now clear that essential tremor is a syndrome, not a specific disease, and the use of essential tremor as a specific clinical diagnosis is arguably an impediment to elucidating this and other pure tremor syndromes and their relationship to dystonia. A new classification, primary tremor, is proposed and would be used for any disorder in which tremor is the sole or principal abnormality with no identifiable etiology other than possible genetic inheritance. This classification scheme would facilitate tremor research by moving the focus from the narrow question "Is it essential tremor?" to a broader consideration of what genetic and environmental factors cause primary tremor disorders, and how do they relate to dystonia and other neurological disorders.
Collapse
Affiliation(s)
- Rodger J Elble
- Department of Neurology, Southern Illinois University School of Medicine, 751 North Rutledge, PO Box 19643, Springfield, IL 62794-9643, USA
| |
Collapse
|
6
|
Cookson MR. Parkinsonism due to mutations in PINK1, parkin, and DJ-1 and oxidative stress and mitochondrial pathways. Cold Spring Harb Perspect Med 2012; 2:a009415. [PMID: 22951446 DOI: 10.1101/cshperspect.a009415] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three genes have been identified that cause, in humans, autosomally inherited parkinsonism. These are PARK2, encoding the E3 ubiquitin ligase parkin; PINK1, a mitochondrial kinase; and PARK7, which codes for the protein DJ-1. In several experimental systems, it has been shown that all three proteins impact mitochondrial function and/or oxidative stress responses. These are probably related because mitochondria produce oxidative stress in neurons. Moreover, it is clear that there are relationships between these genes, with a single pathway linking PINK1 and parkin and a parallel relationship with DJ-1. Work in progress in the field is aimed at understanding these relationships in more depth.
Collapse
Affiliation(s)
- Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Takao M, Aoyama M, Ishikawa K, Sakiyama Y, Yomono H, Saito Y, Kurisaki H, Mihara B, Murayama S. Spinocerebellar ataxia type 2 is associated with Parkinsonism and Lewy body pathology. BMJ Case Rep 2011; 2011:2011/mar31_1/bcr0120113685. [PMID: 22700602 DOI: 10.1136/bcr.01.2011.3685] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Clinical phenotype of individuals with spinocerebellar ataxia 2 (SCA2) is characterised by cerebellar ataxia and cognitive impairment. Although L-dopa-responsive Parkinsonism is considered as a rare clinical presentation in SCA2, it has been brought to the attention of many neurologists in several studies. The authors report an autopsy case of SCA2 with Parkinsonism from a Japanese family using archival materials of our Brain Bank to describe unique neuropathologic findings. The individual clinically showed Parkinsonism as a predominant phenotype instead of cerebellar ataxia. Besides the classic SCA2 neuropathologic alterations, Lewy bodies and Lewy neurites were present in the brainstem nuclei. Genetic analysis revealed shorter abnormal expansion of CAG repeats (less than 39). In contrast, the authors could not find α-synuclein pathology in two SCA2 cases without Parkinsonism. The present case will provide a neuropathologic evidence of correlation between α-synucleinopathy and Parkinsonism of SCA2 as well as shed light on understanding the pathomechanism of Parkinsonism in SCA2.
Collapse
Affiliation(s)
- Masaki Takao
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, The Brain Bank for Aging Research, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Byler SL, Boehm GW, Karp JD, Kohman RA, Tarr AJ, Schallert T, Barth TM. Systemic lipopolysaccharide plus MPTP as a model of dopamine loss and gait instability in C57Bl/6J mice. Behav Brain Res 2008; 198:434-9. [PMID: 19070633 DOI: 10.1016/j.bbr.2008.11.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 11/08/2008] [Accepted: 11/19/2008] [Indexed: 12/20/2022]
Abstract
In most environmental models of Parkinson's disease (PD), a single neurodegenerative agent is introduced to cause nigrostriatal dopamine depletion. However, cell loss in human PD often might derive, at least in part, from multiple toxins or vulnerabilities, any one of which alone does not inevitably lead to chronic dopamine depletion. In the present research, male C57BL/6J mice were systemically administered the inflammatory bacterial endotoxin, lipopolysaccharide (LPS) and the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) alone or in combination and the behavior as well as striatal dopamine levels were compared to saline-treated mice. Mice in the combination (LPS+MPTP) group, but not in the single-factor groups, showed both dopamine depletion and parkinsonian symptoms, i.e., reduced stride length, at 4 months post-injection. MPTP alone acutely reduced striatal dopamine levels but this effect was transient as striatal dopamine recovered to normal levels after time (4 months). The LPS-only group showed no dopamine depletion or reduced stride length. These data are consistent with the view that nigrostriatal dopamine neurons might succumb after time to multiple toxic agents that independently may have only a transient, adverse effect.
Collapse
Affiliation(s)
- Stefanie L Byler
- Texas Christian University, Department of Psychology, Fort Worth, TX, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Hardy J, Gwinn-Hardy K. The relationship between nosology, etiology and pathogenesis in neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2008; 89:189-92. [PMID: 18631743 DOI: 10.1016/s0072-9752(07)01217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Affiliation(s)
- John Hardy
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | | |
Collapse
|
10
|
Linazasoro G. Classical Parkinson disease versus Parkinson complex--reflections against staging and in favour of heterogeneity. Eur J Neurol 2007; 14:721-8. [PMID: 17594326 DOI: 10.1111/j.1468-1331.2007.01853.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pathological studies have prompted the idea that Parkinson disease (PD) is a multisystem disorder, which starts far away from the nigrostriatal dopamine system and it goes through a long pre-clinical period. Evidence from epidemiological research, functional imaging, olfaction and sleep studies provides support to this hypothesis. Accordingly, PD is seen as an homogeneous disease which sequentially affects different neural structures leading to a well-defined clinical picture. This concept, recently named PD complex, has deep theoretical and practical implications which raise some concerns. This report shows the concept of classical PD as opposed to PD complex. Although the relevance of the central argument concerning the PD complex concept is admitted, it needs to be fully proved before premature conclusions are drawn. In contrast, the notion of classical and clinically significant PD can explain many of the well-characterized pathological and clinical features of the disease and it gives support to the idea that the magic word in PD is variability.
Collapse
Affiliation(s)
- G Linazasoro
- Centro De Investigación Parkinson, Policlínica Gipuzkoa, Parque Tecnológico Miramón, San Sebastián (Guipúzcoa), Spain.
| |
Collapse
|
11
|
Braak H, Bohl JR, Müller CM, Rüb U, de Vos RAI, Del Tredici K. Stanley Fahn Lecture 2005: The staging procedure for the inclusion body pathology associated with sporadic Parkinson's disease reconsidered. Mov Disord 2007; 21:2042-51. [PMID: 17078043 DOI: 10.1002/mds.21065] [Citation(s) in RCA: 418] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The synucleinopathy known as sporadic Parkinson's disease (PD) is a multisystem disorder that severely damages predisposed nerve cell types in circumscribed regions of the human nervous system. A recent staging procedure for the inclusion body pathology associated with PD proposes that, in the brain, the pathological process (formation of proteinaceous intraneuronal Lewy bodies and Lewy neurites) begins at two sites and continues in a topographically predictable sequence in six stages, during which components of the olfactory, autonomic, limbic, and somatomotor systems become progressively involved. In stages 1 to 2, the Lewy body pathology is confined to the medulla oblongata/pontine tegmentum and anterior olfactory structures. In stages 3 to 4, the substantia nigra and other nuclei of the basal mid- and forebrain become the focus of initially subtle and, then, severe changes. During this phase, the illness probably becomes clinically manifest. In the final stages 5 to 6, the lesions appear in the neocortex. This cross-sectional study originally was performed on 168 autopsy cases using material from 69 incidental cases and 41 clinically diagnosed PD patients as well as 58 age- and gender-matched controls. Here, the staging hypothesis is critically reconsidered and discussed.
Collapse
Affiliation(s)
- Heiko Braak
- Institute for Clinical Neuroanatomy, JW Goethe University, Frankfurt/Main, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Hoepken HH, Gispert S, Morales B, Wingerter O, Del Turco D, Mülsch A, Nussbaum RL, Müller K, Dröse S, Brandt U, Deller T, Wirth B, Kudin AP, Kunz WS, Auburger G. Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol Dis 2006; 25:401-11. [PMID: 17141510 DOI: 10.1016/j.nbd.2006.10.007] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/03/2006] [Accepted: 10/09/2006] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress and protein aggregation are biochemical hallmarks of Parkinson's disease (PD), a frequent sporadic late-onset degenerative disorder particularly of dopaminergic neurons in the substantia nigra, resulting in impaired spontaneous movement. PARK6 is a rare autosomal-recessively inherited disorder, mimicking the clinical picture of PD with earlier onset and slower progression. Genetic data demonstrated PARK6 to be caused by mutations in the protein PINK1, which is localized to mitochondria and has a serine-threonine kinase domain. To study the effect of PINK1 mutations on oxidative stress, we used primary fibroblasts and immortalized lymphoblasts from three patients homozygous for G309D-PINK1. Oxidative stress was evident from increases in lipid peroxidation and in antioxidant defenses by mitochondrial superoxide dismutase and glutathione. Elevated levels of glutathione reductase and glutathione-S-transferase were also observed. As a putative cause of oxidation, a mild decrease in complex I activity and a trend to superoxide elevation were detectable. These data indicate that PINK1 function is critical to prevent oxidative damage and that peripheral cells may be useful for studies of progression and therapy of PARK6.
Collapse
Affiliation(s)
- Hans-Hermann Hoepken
- Section for Molecular Neurogenetics, Clinic for Neurology, University Hospital, Theodor Stern Kai 7, 60590 Frankfurt/M., Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
In the last 50 years, an enormous amount of progress has been made in dissecting the etiology of hereditary neurodegenerative diseases, including the dementias, the parkinsonisms, the ataxias and the motor-neuron diseases. In addition, these genetic findings are beginning to provide insights into the pathogeneses of the sporadic forms of the diseases. Through animal and cellular modeling studies we are beginning to gain insights into the pathogenic pathways to disease. This mechanistic understanding is now leading to therapeutic strategies based on this new understanding. As yet, however, no mechanistic therapies are in use in the clinic.
Collapse
Affiliation(s)
- John Hardy
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|