1
|
Larsh T, Wu SW, Vadivelu S, Grant GA, O'Malley JA. Deep Brain Stimulation for Pediatric Dystonia. Semin Pediatr Neurol 2021; 38:100896. [PMID: 34183138 DOI: 10.1016/j.spen.2021.100896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022]
Abstract
Dystonia is one of the most common pediatric movement disorders and can have a profound impact on the lives of children and their caregivers. Response to pharmacologic treatment is often unsatisfactory. Deep brain stimulation (DBS) has emerged as a promising treatment option for children with medically refractory dystonia. In this review we highlight the relevant literature related to DBS for pediatric dystonia, with emphasis on the background, indications, prognostic factors, challenges, and future directions of pediatric DBS.
Collapse
Affiliation(s)
- Travis Larsh
- Center for Pediatric Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Sudhakar Vadivelu
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Gerald A Grant
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Stanford University School of Medicine, Palo Alto, CA
| | - Jennifer A O'Malley
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, Palo Alto, CA.
| |
Collapse
|
2
|
Tsuboi T, Cif L, Coubes P, Ostrem JL, Romero DA, Miyagi Y, Lozano AM, De Vloo P, Haq I, Meng F, Sharma N, Ozelius LJ, Wagle Shukla A, Cauraugh JH, Foote KD, Okun MS. Secondary Worsening Following DYT1 Dystonia Deep Brain Stimulation: A Multi-country Cohort. Front Hum Neurosci 2020; 14:242. [PMID: 32670041 PMCID: PMC7330126 DOI: 10.3389/fnhum.2020.00242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
Objective: To reveal clinical characteristics of suboptimal responses to deep brain stimulation (DBS) in a multi-country DYT1 dystonia cohort. Methods: In this multi-country multi-center retrospective study, we analyzed the clinical data of DYT1 patients who experienced suboptimal responses to DBS defined as <30% improvement in dystonia scales at the last follow-up compared with baseline. We used a literature-driven historical cohort of 112 DYT1 patients for comparison. Results: Approximately 8% of our study cohort (11 out of 132) experienced suboptimal responses to DBS. Compared with the historical cohort, the multi-country cohort with suboptimal responses had a significantly younger age at onset (mean, 7.0 vs. 8.4 years; p = 0.025) and younger age at DBS (mean, 12.0 vs. 18.6 years; p = 0.019). Additionally, cranial involvement was more common in the multi-country cohort (before DBS, 64% vs. 45%, p = 0.074; before or after DBS, 91% vs. 47%, p = 0.001). Mean motor improvement at the last follow-up from baseline were 0% and 66% for the multi-country and historical cohorts, respectively. All 11 patients of the multi-country cohort had generalization of dystonia within 2.5 years after disease onset. All patients experienced dystonia improvement of >30% postoperatively; however, secondary worsening of dystonia commenced between 6 months and 3 years following DBS. The improvement at the last follow-up was less than 30% despite optimally-placed leads, a trial of multiple programming settings, and additional DBS surgeries in all patients. The on-/off-stimulation comparison at the long-term follow-up demonstrated beneficial effects of DBS despite missing the threshold of 30% improvement over baseline. Conclusion: Approximately 8% of patients represent a more aggressive phenotype of DYT1 dystonia characterized by younger age at onset, faster disease progression, and cranial involvement, which seems to be associated with long-term suboptimal responses to DBS (e.g., secondary worsening). This information could be useful for both clinicians and patients in clinical decision making and patient counseling before and following DBS implantations. Patients with this phenotype may have different neuroplasticity, neurogenetics, or possibly distinct neurophysiology.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Laura Cif
- Department of Neurology, University Hospital Montpellier, Montpellier, France
| | - Philippe Coubes
- Department of Neurosurgery, University Hospital Montpellier, Montpellier, France
| | - Jill L Ostrem
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Danilo A Romero
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Yasushi Miyagi
- Department of Stereotactic and Functional Neurosurgery, Fukuoka Mirai Hospital, Fukuoka, Japan
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital Krembil Neuroscience Center, Toronto, ON, Canada.,Department of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Philippe De Vloo
- Department of Neurosurgery, University of Toronto, Toronto, ON, Canada.,Department of Neurosurgery, KU Leuven, Leuven, Belgium
| | - Ihtsham Haq
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fangang Meng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Aparna Wagle Shukla
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - James H Cauraugh
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Termsarasab P, Thammongkolchai T, Frucht SJ. Medical treatment of dystonia. JOURNAL OF CLINICAL MOVEMENT DISORDERS 2016; 3:19. [PMID: 28031858 PMCID: PMC5168853 DOI: 10.1186/s40734-016-0047-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/08/2016] [Indexed: 11/25/2022]
Abstract
Therapeutic strategies in dystonia have evolved considerably in the past few decades. Three major treatment modalities include oral medications, botulinum toxin injections and surgical therapies, particularly deep brain stimulation. Although there has been a tremendous interest in the later two modalities, there are relatively few recent reviews of oral treatment. We review the medical treatment of dystonia, focusing on three major neurotransmitter systems: cholinergic, GABAergic and dopaminergic. We also provide a practical guide to medication selection, therapeutic strategy and unmet needs.
Collapse
Affiliation(s)
- Pichet Termsarasab
- Movement Disorder Division, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Steven J. Frucht
- Movement Disorder Division, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
4
|
Barbey A, Bloch J, Vingerhoets FJG. DBS in Dystonia and Other Hyperkinetic Movement Disorders. Curr Treat Options Neurol 2015; 17:373. [PMID: 26257150 DOI: 10.1007/s11940-015-0373-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OPINION STATEMENT The diagnosis and appropriate treatment of hyperkinetic movement disorders require a work up of potentially reversible metabolic, infectious and structural disorders as well as side effects of current medication. In pharmacoresistant movement disorders with a disabling impact on quality of life, deep brain stimulation (DBS) should be considered. At different targets, DBS has become an established therapy for Parkinson's disease (GPi-STN), tremor (VIM) and primary dystonia (GPi) with reasonable perioperative risks and side effects, established guidelines and some clinical and radiological predictive factors. In contrast, for other hyperkinetic movement disorders, including secondary dystonia, Gilles de la Tourette, chorea and ballism, only few data are available. Definite targets are not well defined, and reported results are of less magnitude than those of the recognized indications. In this expanding therapeutical field without worked out recommendations, an individual approach is needed with DBS indication assessment only after rigorous multidisciplinary scrutiny, restricted to expert centres.
Collapse
Affiliation(s)
- A Barbey
- Department of Neurology, Centre Hospitalier Universitaire Vaudois (CHUV), Rue de Bugnon 21, CH-1011, Lausanne, Switzerland
| | | | | |
Collapse
|
5
|
Abstract
OPINION STATEMENT Dystonia is a movement disorder caused by diverse etiologies. Its treatment in children is particularly challenging due to the complexity of the development of the nervous system from birth to young adulthood. The treatment options of childhood dystonia include several oral pharmaceutical agents, botulinum toxin injections, and deep brain stimulation (DBS) therapy. The choice of drug therapy relies on the suspected etiology of the dystonia and the adverse effect profile of the drugs. Dystonic syndromes with known etiologies may require specific interventions, but most dystonias are treated by trying serially a handful of medications starting with those with the best risk/benefit profile. In conjunction to drug therapy, botulinum toxin injections may be used to target a problematic group dystonic muscles. The maximal botulinum toxin dose is limited by the weight of the child, therefore limiting the number of the muscles amenable to such treatment. When drugs and botulinum toxin injections fail to control the child's disabling dystonia, DBS therapy may be offered as a last remedy. Delivering optimal DBS therapy to children with dystonia requires a multidisciplinary team of experienced pediatric neurosurgeons, neurologists, and nurses to select adequate candidates, perform this delicate stereotactic procedure, and optimize DBS delivery. Even in the best hands, the response of childhood dystonia to DBS therapy varies greatly. Future therapy of childhood dystonia will parallel the advancement of knowledge of the pathophysiology of dystonic syndromes and the development of clinical and research tools for their study.
Collapse
Affiliation(s)
- Samer D Tabbal
- Department of Neurology, American University of Beirut, Riad El-Solh, PO Box 11-0236, Beirut, 1107 2020, Lebanon,
| |
Collapse
|
6
|
Thobois S, Danaila T, Polo G, Simon E, Mertens P, Broussolle E. Deep-brain stimulation for dystonia: current indications and future orientations. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.13.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Deep-brain stimulation of the internal globus pallidus is a therapeutic option for dystonia. However, the available data are heterogeneous, ranging from single case reports to a few controlled studies. The outcomes are also largely heterogeneous, depending mostly on the etiology of the dystonia. Except for some well-established good indications, such as primary generalized dystonia and tardive dyskinesia, the efficacy of globus pallidus stimulation remains debated for several forms of dystonia. In addition, many issues are still unsolved, such as the best target of stimulation and the interest of simultaneously combining multiple targets of stimulation or not. Finally the efficacy of new strategies of treatment, such as cortical stimulation, remains to be determined. The aim of this review is to cover these different aspects and give an overview of the current indications and future orientations.
Collapse
Affiliation(s)
- Stéphane Thobois
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Neurologie C, Université Lyon I, Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, Lyon, 59 Boulevard Pinel, 69677 Bron, France
| | - Teodor Danaila
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Neurologie C, Université Lyon I, Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, Lyon, 59 Boulevard Pinel, 69677 Bron, France
| | - Gustavo Polo
- Hospices Civils de Lyon, Hôpital Neurologique, Neurochirurgie A, Université Lyon I, Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, Lyon, France
| | - Emile Simon
- Hospices Civils de Lyon, Hôpital Neurologique, Neurochirurgie A, Université Lyon I, Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, Lyon, France
| | - Patrick Mertens
- Hospices Civils de Lyon, Hôpital Neurologique, Neurochirurgie A, Université Lyon I, Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, Lyon, France
| | - Emmanuel Broussolle
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Neurologie C, Université Lyon I, Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, Lyon, 59 Boulevard Pinel, 69677 Bron, France
- Centre National de la Recherche Scientifique, UMR 5229, Centre de Neurosciences Cognitives, Bron, France
| |
Collapse
|
7
|
Abstract
The few controlled studies that have been carried out have shown that bilateral internal globus pallidum stimulation is a safe and long-term effective treatment for hyperkinetic disorders. However, most recent published data on deep brain stimulation (DBS) for dystonia, applied to different targets and patients, are still mainly from uncontrolled case reports (especially for secondary dystonia). This precludes clear determination of the efficacy of this procedure and the choice of the 'good' target for the 'good' patient. We performed a literature analysis on DBS for dystonia according to the expected outcome. We separated those with good evidence of favourable outcome from those with less predictable outcome. In the former group, we review the main results for primary dystonia (generalised/focal) and highlight recent data on myoclonus-dystonia and tardive dystonia (as they share, with primary dystonia, a marked beneficial effect from pallidal stimulation with good risk/benefit ratio). In the latter group, poor or variable results have been obtained for secondary dystonia (with a focus on heredodegenerative and metabolic disorders). From this overview, the main results and limits for each subgroup of patients that may help in the selection of dystonic patients who will benefit from DBS are discussed.
Collapse
Affiliation(s)
- Marie Vidailhet
- AP-HP, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | | | | | | |
Collapse
|
8
|
Vidailhet M, Jutras MF, Roze E, Grabli D. Deep brain stimulation for dystonia. HANDBOOK OF CLINICAL NEUROLOGY 2013; 116:167-187. [PMID: 24112893 DOI: 10.1016/b978-0-444-53497-2.00014-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The few reported controlled studies show that bilateral stimulation of the globus pallidus interna (GPi) is a safe and effective long-term treatment for hyperkinetic disorders. However, the recently published data on deep brain stimulation (DBS) applied to different targets or patients (especially those with secondary dystonia) are mainly uncontrolled case reports, precluding a clear determination of its efficacy, and providing little guidance as to the choice of a "good" target in a "good" patient. This chapter reviews the literature on DBS in primary dystonia, paying particular attention to the risk:benefit ratio in focal and segmental dystonias (cervical dystonia, cranial dystonia) and to the predictive factors for a good outcome. The chapter also highlights recent data on the marked benefits of the technique in myoclonus dystonia (in which pallidal, as opposed to thalamic, stimulation is more effective) and in tardive dystonia-dyskinesia. Although, the decision to treat appears relatively straightforward in patients with primary dystonia, myoclonus-dystonia, and tardive dystonia who have a normal findings on magnetic resonance imaging and normal cognitive function, there are still no reliable tools to help predict the timescale of postoperative benefit. This chapter provides a comprehensive analysis of the use of the treatment in various types of secondary dystonia, with little to moderate benefit in most cases, based on single cases or small series. Beyond the reduction in the severity of dystonia, the global motor and functional outcome is difficult to determine owing to the paucity of adequate evaluation tools. Because of the large interpatient variability, different targets may be effective depending on the symptoms in each individual.
Collapse
Affiliation(s)
- Marie Vidailhet
- Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Research Center of the Brain and Spinal Cord Institute, Université Paris 6/Inserm UMR S975, Paris, France; Pierre et Marie Curie Paris-6 University, Paris, France
| | | | | | | |
Collapse
|
9
|
Lumsden DE, Kaminska M, Tustin K, Gimeno H, Baker L, Ashkan K, Selway R, Lin JP. Battery life following pallidal deep brain stimulation (DBS) in children and young people with severe primary and secondary dystonia. Childs Nerv Syst 2012; 28:1091-7. [PMID: 22427261 DOI: 10.1007/s00381-012-1728-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND The finite life of non-rechargeable batteries powering implantable pulse generators (IPG) necessitates their periodic replacement. Children receiving deep brain stimulation (DBS) may require frequent battery changes over their treatment lifetime. OBJECTIVES We aimed to determine the battery life of IPGs used in pallidal DBS for the treatment of dystonia in children and young people. METHODS We make use of a review of case notes of all children and young people undergoing DBS surgery at our institution from June 2005 to May 2010. RESULTS A total of 54 children and young people underwent surgery on at least one occasion, with a total of 76 IPGs implanted. Replacement IPGs due to battery failure were required in 15 out of 54 (27.8%). The average time to battery failure was 24.5 ± 2.9 months (95% confidence interval), with a range of 13-39 months. Battery life was significantly longer in primary compared to subsequent IPGs. No difference in longevity was seen between different IPG devices. CONCLUSIONS IPG battery life may be short in children and young people receiving treatment for dystonia. These findings highlight the potential benefits of the recently introduced rechargeable neurostimulators.
Collapse
Affiliation(s)
- Daniel E Lumsden
- Complex Motor Disorder Service, Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Lambeth Palace Road, London SE1 7EH, UK
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Deep brain stimulation for hyperkinetics disorders: dystonia, tardive dyskinesia, and tics. Curr Opin Neurol 2011; 23:420-5. [PMID: 20610993 DOI: 10.1097/wco.0b013e32833b7798] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW This review focuses on new insights in deep brain stimulation (DBS) for patients with hyperkinetic movement disorders: dystonia, tardive dyskinesia and Gille de la Tourette's syndrome, during the last 18 months. RECENT FINDINGS The recent literature confirms the efficacy of high-frequency stimulation of the globus pallidus internus (GPi) for primary dystonia, generalized or not, with a stable effect over time. The benefit of DBS in other forms of localized dystonia remains to be demonstrated in larger studies. Some clinical and radiological predictive factors have been determined with a predominant influence of the disease duration. Tardive dystonia and myoclonus-dystonia are also improved by GPi stimulation. Encouraging results obtained in cerebral palsy may pave the way for the application of DBS in other secondary dystonia. In Gilles de la Tourette's syndrome, both stimulation of the centre-median/parafascicular nucleus of the thalamus and GPi stimulation (ventromedial) have demonstrated efficacy with stable long-term effect. Thalamic stimulation failed to improve obsessions and compulsions in some patients. Stimulation of the nucleus accumbens has been tested in few cases with contradictory efficacy. In both diseases, complications are rare with no major side effects. SUMMARY The few controlled studies showed that bilateral GPi stimulation is a well tolerated and a long-term effective treatment for hyperkinetic disorders. However, recent published data of DBS applied in different targets or patients (especially secondary dystonia) are mainly uncontrolled case reports, precluding the clear determination of the efficacy of this procedure and the choice of the 'good' target for the 'good' patient.
Collapse
|