1
|
Swinnen BEKS, Hoy CW, Pegolo E, Ishihara B, Matzilevich EU, Sun J, Morgante F, Pereira E, Baig F, Hart M, Tan H, Sawacha Z, Beudel M, Wang S, Starr P, Little S, Ricciardi L. Basal ganglia theta power indexes trait anxiety in people with Parkinson's disease. Brain 2025; 148:1228-1241. [PMID: 39432676 PMCID: PMC7617510 DOI: 10.1093/brain/awae313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/15/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Neuropsychiatric symptoms are common and disabling in Parkinson's disease, with troublesome anxiety occurring in one-third of patients. Management of anxiety in Parkinson's disease is challenging, hampered by insufficient insight into underlying mechanisms, lack of objective anxiety measurements and largely ineffective treatments. In this study, we assessed the intracranial neurophysiological correlates of anxiety in patients with Parkinson's disease treated with deep brain stimulation (DBS) in the laboratory and at home. We hypothesized that low-frequency (theta-alpha) activity would be associated with anxiety. We recorded local field potentials from subthalamic nucleus or globus pallidus pars interna DBS implants in three Parkinson's disease cohorts: (i) patients with recordings (subthalamic nucleus) performed in hospital at rest via perioperatively externalized leads, without active stimulation, both ON and OFF dopaminergic medication; (ii) patients with recordings (subthalamic nucleus or globus pallidus pars interna) performed at home while resting, via a chronically implanted commercially available sensing-enabled neurostimulator (Medtronic Percept™ device), ON dopaminergic medication, with stimulation both on and off; and (iii) patients with recordings performed at home while engaging in a behavioural task via subthalamic nucleus and globus pallidus pars interna leads and electrocorticography paddles over the premotor cortex connected to an investigational sensing-enabled neurostimulator, ON dopaminergic medication, with stimulation both on and off. Trait anxiety was measured with validated clinical scales in all participants, and state anxiety was measured with momentary assessment scales at multiple time points in the two at-home cohorts. Power in theta (4-8 Hz) and alpha (8-12 Hz) ranges was extracted from the local field potential recordings, and its relationship with anxiety ratings was assessed using linear mixed-effects models. In total, 33 patients with Parkinson's disease (59 hemispheres) were included. Across three independent cohorts, with stimulation off, basal ganglia theta power was positively related to trait anxiety (all P < 0.05). Also in a naturalistic setting, with individuals at home, at rest, with stimulation and medication ON, basal ganglia theta power was positively related to trait anxiety (P < 0.05). This relationship held regardless of the hemisphere and DBS target. There was no correlation between trait anxiety and premotor cortical theta-alpha power. There was no within-patient association between basal ganglia theta-alpha power and state anxiety. We showed that basal ganglia theta activity indexes trait anxiety in Parkinson's disease. Our data suggest that theta could be a possible physiomarker of neuropsychiatric symptoms and specifically of anxiety in Parkinson's disease, potentially suitable for guiding advanced DBS treatment tailored to the needs of the individual patient, including non-motor symptoms.
Collapse
Affiliation(s)
- Bart E K S Swinnen
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Colin W Hoy
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elena Pegolo
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George’s University of London, London SW17 0RE, UK
- Department of Information Engineering, University of Padova, Padova 35131, Italy
| | - Bryony Ishihara
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George’s University of London, London SW17 0RE, UK
| | - Elena Ubeda Matzilevich
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Julia Sun
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Francesca Morgante
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George’s University of London, London SW17 0RE, UK
| | - Erlick Pereira
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George’s University of London, London SW17 0RE, UK
| | - Fahd Baig
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George’s University of London, London SW17 0RE, UK
| | - Michael Hart
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George’s University of London, London SW17 0RE, UK
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Zimi Sawacha
- Department of Information Engineering, University of Padova, Padova 35131, Italy
| | - Martijn Beudel
- Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Sarah Wang
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Philip Starr
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Simon Little
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Lucia Ricciardi
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George’s University of London, London SW17 0RE, UK
| |
Collapse
|
2
|
Herz DM, Frank MJ, Tan H, Groppa S. Subthalamic control of impulsive actions: insights from deep brain stimulation in Parkinson's disease. Brain 2024; 147:3651-3664. [PMID: 38869168 PMCID: PMC11531846 DOI: 10.1093/brain/awae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Control of actions allows adaptive, goal-directed behaviour. The basal ganglia, including the subthalamic nucleus, are thought to play a central role in dynamically controlling actions through recurrent negative feedback loops with the cerebral cortex. Here, we summarize recent translational studies that used deep brain stimulation to record neural activity from and apply electrical stimulation to the subthalamic nucleus in people with Parkinson's disease. These studies have elucidated spatial, spectral and temporal features of the neural mechanisms underlying the controlled delay of actions in cortico-subthalamic networks and demonstrated their causal effects on behaviour in distinct processing windows. While these mechanisms have been conceptualized as control signals for suppressing impulsive response tendencies in conflict tasks and as decision threshold adjustments in value-based and perceptual decisions, we propose a common framework linking decision-making, cognition and movement. Within this framework, subthalamic deep brain stimulation can lead to suboptimal choices by reducing the time that patients take for deliberation before committing to an action. However, clinical studies have consistently shown that the occurrence of impulse control disorders is reduced, not increased, after subthalamic deep brain stimulation surgery. This apparent contradiction can be reconciled when recognizing the multifaceted nature of impulsivity, its underlying mechanisms and modulation by treatment. While subthalamic deep brain stimulation renders patients susceptible to making decisions without proper forethought, this can be disentangled from effects related to dopamine comprising sensitivity to benefits versus costs, reward delay aversion and learning from outcomes. Alterations in these dopamine-mediated mechanisms are thought to underlie the development of impulse control disorders and can be relatively spared with reduced dopaminergic medication after subthalamic deep brain stimulation. Together, results from studies using deep brain stimulation as an experimental tool have improved our understanding of action control in the human brain and have important implications for treatment of patients with neurological disorders.
Collapse
Affiliation(s)
- Damian M Herz
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Michael J Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI 02903, USA
| | - Huiling Tan
- MRC Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3TH Oxford, UK
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
3
|
Voon V, Manssuer L, Zhao YJ, Ding Q, Zhao Y, Wang L, Wang T, Huang P, Pan Y, Sun B, Li D. Modeling impulsivity and risk aversion in the subthalamic nucleus with deep brain stimulation. NATURE. MENTAL HEALTH 2024; 2:1084-1095. [PMID: 39263364 PMCID: PMC11383798 DOI: 10.1038/s44220-024-00289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/24/2024] [Indexed: 09/13/2024]
Abstract
Risk evaluation is ubiquitous in decisions. Deep brain stimulation of the subthalamic nucleus is effective for Parkinson's disease and obsessive-compulsive disorder, and can be associated with impulsivity and hypomania. Subthalamic stimulation has seemingly contrasting effects on impulsivity enhancing conflict-induced impulsivity but decreasing risk taking. Here, using a card gambling task paired with intracranial recordings (n = 25) and within-subject case control acute stimulation (n = 15) of the right subthalamic nucleus, we dissociated objective risk and uncertainty and subjective physiological markers of risk. Acute stimulation decreased risk taking (P = 0.010, Cohen's d = 0.72) and increased subthalamic theta activity (P < 0.001, Cohen's d = 0.72). Critically, stimulation negatively shifted the relationship between subthalamic physiology and a measure of evidence accumulation similar to observations with stimulation-induced conflict processing. This highlights the phenotypic and physiological heterogeneity of impulsivity, yet linking mechanisms underlying stimulation-induced conflict and risk. Finally, stimulation-induced risk seeking implicates the ventral subthalamic nucleus and dissociating anatomical and functional connectivity with the mesial prefrontal cortex. Our findings have implications for conceptualizations of impulsivity, and clinical relevance for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Valerie Voon
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Luis Manssuer
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Yi-Jie Zhao
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Qiong Ding
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Ying Zhao
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Linbin Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Bertrand M, Chabardes S, Fontanier V, Procyk E, Bastin J, Piallat B. Contribution of the subthalamic nucleus to motor, cognitive and limbic processes: an electrophysiological and stimulation study in monkeys. Front Neurosci 2024; 18:1257579. [PMID: 38456146 PMCID: PMC10918855 DOI: 10.3389/fnins.2024.1257579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Deep brain stimulation of the subthalamic nucleus (STN) has become the gold standard surgical treatment for Parkinson's disease and is being investigated for obsessive compulsive disorders. Even if the role of the STN in the behavior is well documented, its organization and especially its division into several functional territories is still debated. A better characterization of these territories and a better knowledge of the impact of stimulation would address this issue. We aimed to find specific electrophysiological markers of motor, cognitive and limbic functions within the STN and to specifically modulate these components. Two healthy non-human primates (Macaca fascicularis) performed a behavioral task allowing the assessment of motor, cognitive and limbic reward-related behavioral components. During the task, four contacts in the STN allowed recordings and stimulations, using low frequency stimulation (LFS) and high frequency stimulation (HFS). Specific electrophysiological functional markers were found in the STN with beta band activity for the motor component of behavior, theta band activity for the cognitive component, and, gamma and theta activity bands for the limbic component. For both monkeys, dorsolateral HFS and LFS of the STN significantly modulated motor performances, whereas only ventromedial HFS modulated cognitive performances. Our results validated the functional overlap of dorsal motor and ventral cognitive subthalamic territories, and, provide information that tends toward a diffuse limbic territory sensitive to the reward within the STN.
Collapse
Affiliation(s)
- Mathilde Bertrand
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neurosciences, Grenoble, France
| | - Stephan Chabardes
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neurosciences, Grenoble, France
- Univ. Grenoble Alpes, Department of Neurosurgery, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute Neurosciences, Grenoble, France
- Clinatec-CEA Leti, Grenoble, France
| | - Vincent Fontanier
- Univ. Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
- Medinetic Learning, Research Department, Paris, France
| | - Emmanuel Procyk
- Univ. Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neurosciences, Grenoble, France
| | - Brigitte Piallat
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neurosciences, Grenoble, France
| |
Collapse
|
5
|
Ricciardi L, Apps M, Little S. Uncovering the neurophysiology of mood, motivation and behavioral symptoms in Parkinson's disease through intracranial recordings. NPJ Parkinsons Dis 2023; 9:136. [PMID: 37735477 PMCID: PMC10514046 DOI: 10.1038/s41531-023-00567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 08/07/2023] [Indexed: 09/23/2023] Open
Abstract
Neuropsychiatric mood and motivation symptoms (depression, anxiety, apathy, impulse control disorders) in Parkinson's disease (PD) are highly disabling, difficult to treat and exacerbated by current medications and deep brain stimulation therapies. High-resolution intracranial recording techniques have the potential to undercover the network dysfunction and cognitive processes that drive these symptoms, towards a principled re-tuning of circuits. We highlight intracranial recording as a valuable tool for mapping and desegregating neural networks and their contribution to mood, motivation and behavioral symptoms, via the ability to dissect multiplexed overlapping spatial and temporal neural components. This technique can be powerfully combined with behavioral paradigms and emerging computational techniques to model underlying latent behavioral states. We review the literature of intracranial recording studies investigating mood, motivation and behavioral symptomatology with reference to 1) emotional processing, 2) executive control 3) subjective valuation (reward & cost evaluation) 4) motor control and 5) learning and updating. This reveals associations between different frequency specific network activities and underlying cognitive processes of reward decision making and action control. If validated, these signals represent potential computational biomarkers of motivational and behavioural states and could lead to principled therapy development for mood, motivation and behavioral symptoms in PD.
Collapse
Affiliation(s)
- Lucia Ricciardi
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK.
| | - Matthew Apps
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Simon Little
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
A systematic review of local field potential physiomarkers in Parkinson's disease: from clinical correlations to adaptive deep brain stimulation algorithms. J Neurol 2023; 270:1162-1177. [PMID: 36209243 PMCID: PMC9886603 DOI: 10.1007/s00415-022-11388-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/16/2022] [Indexed: 02/03/2023]
Abstract
Deep brain stimulation (DBS) treatment has proven effective in suppressing symptoms of rigidity, bradykinesia, and tremor in Parkinson's disease. Still, patients may suffer from disabling fluctuations in motor and non-motor symptom severity during the day. Conventional DBS treatment consists of continuous stimulation but can potentially be further optimised by adapting stimulation settings to the presence or absence of symptoms through closed-loop control. This critically relies on the use of 'physiomarkers' extracted from (neuro)physiological signals. Ideal physiomarkers for adaptive DBS (aDBS) are indicative of symptom severity, detectable in every patient, and technically suitable for implementation. In the last decades, much effort has been put into the detection of local field potential (LFP) physiomarkers and in their use in clinical practice. We conducted a research synthesis of the correlations that have been reported between LFP signal features and one or more specific PD motor symptoms. Features based on the spectral beta band (~ 13 to 30 Hz) explained ~ 17% of individual variability in bradykinesia and rigidity symptom severity. Limitations of beta band oscillations as physiomarker are discussed, and strategies for further improvement of aDBS are explored.
Collapse
|
7
|
Cometa A, Falasconi A, Biasizzo M, Carpaneto J, Horn A, Mazzoni A, Micera S. Clinical neuroscience and neurotechnology: An amazing symbiosis. iScience 2022; 25:105124. [PMID: 36193050 PMCID: PMC9526189 DOI: 10.1016/j.isci.2022.105124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the last decades, clinical neuroscience found a novel ally in neurotechnologies, devices able to record and stimulate electrical activity in the nervous system. These technologies improved the ability to diagnose and treat neural disorders. Neurotechnologies are concurrently enabling a deeper understanding of healthy and pathological dynamics of the nervous system through stimulation and recordings during brain implants. On the other hand, clinical neurosciences are not only driving neuroengineering toward the most relevant clinical issues, but are also shaping the neurotechnologies thanks to clinical advancements. For instance, understanding the etiology of a disease informs the location of a therapeutic stimulation, but also the way stimulation patterns should be designed to be more effective/naturalistic. Here, we describe cases of fruitful integration such as Deep Brain Stimulation and cortical interfaces to highlight how this symbiosis between clinical neuroscience and neurotechnology is closer to a novel integrated framework than to a simple interdisciplinary interaction.
Collapse
Affiliation(s)
- Andrea Cometa
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Antonio Falasconi
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marco Biasizzo
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Jacopo Carpaneto
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Andreas Horn
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Neurology, 10117 Berlin, Germany
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Silvestro Micera
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Translational Neural Engineering Lab, School of Engineering, École Polytechnique Fèdèrale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Cortical network formation based on subthalamic beta bursts in Parkinson's disease. Neuroimage 2022; 263:119619. [PMID: 36087901 DOI: 10.1016/j.neuroimage.2022.119619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/02/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
Recent evidence suggests that beta bursts in subthalamic nucleus (STN) play an important role in Parkinsonian pathophysiology. We studied the spatio-temporal relationship between STN beta bursts and cortical activity in 26 Parkinson's disease (PD) patients undergoing deep brain stimulation (DBS) surgery. Postoperatively, we simultaneously recorded STN local field potentials (LFP) from externalized DBS leads and cortical activity using whole-brain magnetoencephalography. Event-related magnetic fields (ERF) were averaged time-locked to STN beta bursts and subjected to source localization. Our results demonstrate that ERF exhibiting activity significantly different from baseline activity were localized within areas functionally related to associative, limbic, and motor systems as well as regions pertinent for visual and language processing. Our data suggest that STN beta bursts are involved in network formation between STN and cortex. This interaction is in line with the idea of parallel processing within the basal ganglia-cortex loop, specifically within the functional subsystems of the STN (i.e., associative, limbic, motor, and the related cortical areas). ERFs within visual and language-related cortical areas indicate involvement of beta bursts in STN-cortex networks beyond the associative, limbic, and motor loops. In sum, our results highlight the involvement of STN beta bursts in the formation of multiple STN - cortex loops in patients with PD.
Collapse
|
9
|
Foffani G, Alegre M. Brain oscillations and Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:259-271. [PMID: 35034740 DOI: 10.1016/b978-0-12-819410-2.00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Brain oscillations have been associated with Parkinson's disease (PD) for a long time mainly due to the fundamental oscillatory nature of parkinsonian rest tremor. Over the years, this association has been extended to frequencies well above that of tremor, largely owing to the opportunities offered by deep brain stimulation (DBS) to record electrical activity directly from the patients' basal ganglia. This chapter reviews the results of research on brain oscillations in PD focusing on theta (4-7Hz), beta (13-35Hz), gamma (70-80Hz) and high-frequency oscillations (200-400Hz). For each of these oscillations, we describe localization and interaction with brain structures and between frequencies, changes due to dopamine intake, task-related modulation, and clinical relevance. The study of brain oscillations will also help to dissect the mechanisms of action of DBS. Overall, the chapter tentatively depicts PD in terms of "oscillopathy."
Collapse
Affiliation(s)
- Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Neural Bioengineering, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain.
| | - Manuel Alegre
- Clinical Neurophysiology Section, Clínica Universidad de Navarra, Pamplona, Spain; Systems Neuroscience Lab, Program of Neuroscience, CIMA, Universidad de Navarra, Pamplona, Spain; IdisNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| |
Collapse
|
10
|
Ricciardi L, Fischer P, Mostofi A, Tinkhauser G, Torrecillos F, Baig F, Edwards MJ, Pereira EAC, Morgante F, Brown P. Neurophysiological Correlates of Trait Impulsivity in Parkinson's Disease. Mov Disord 2021; 36:2126-2135. [PMID: 33982824 PMCID: PMC7611688 DOI: 10.1002/mds.28625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 11/20/2022] Open
Abstract
Background Impulsivity is common in people with Parkinson’s disease (PD), with many developing impulsive compulsive behavior disorders (ICB). Its pathophysiological basis remains unclear. Objectives We aimed to investigate local field potential (LFP) markers of trait impulsivity in PD and their relationship to ICB. Methods We recorded subthalamic nucleus (STN) LFPs in 23 PD patients undergoing deep brain stimulation implantation. Presence and severity of ICB were assessed by clinical interview and the Questionnaire for Impulsive-Compulsive Disorders in PD-Rating Scale (QUIP-RS), whereas trait impulsivity was estimated with the Barratt Impulsivity Scale (BIS-11). Recordings were obtained during the off dopaminergic states and the power spectrum of the subthalamic activity was analyzed using Fourier transform-based techniques. Assessment of each electrode contact localization was done to determine the topography of the oscillatory activity recorded. Results Patients with (n = 6) and without (n = 17) ICB had similar LFP spectra. A multiple regression model including QUIP-RS, BIS-11, and Unified PD Rating Scale-III scores as regressors showed a significant positive correlation between 8–13 Hz power and BIS-11 score. The correlation was mainly driven by the motor factor of the BIS-11, and was irrespective of the presence or absence of active ICB. Electrode contact pairs with the highest α power, which also correlated most strongly with BIS-11, tended to be more ventral than contact pairs with the highest beta power, which localize to the dorsolateral motor STN. Conclusions Our data suggest a link between α power and trait impulsivity in PD, irrespective of the presence and severity of ICB.
Collapse
Affiliation(s)
- Lucia Ricciardi
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom.,Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, Oxford, United Kingdom
| | - Petra Fischer
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, Oxford, United Kingdom
| | - Abteen Mostofi
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Flavie Torrecillos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, Oxford, United Kingdom
| | - Fahd Baig
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom.,Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, Oxford, United Kingdom
| | - Mark J Edwards
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Erlick A C Pereira
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom.,Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, Oxford, United Kingdom
| |
Collapse
|
11
|
Yin Z, Zhu G, Zhao B, Bai Y, Jiang Y, Neumann WJ, Kühn AA, Zhang J. Local field potentials in Parkinson's disease: A frequency-based review. Neurobiol Dis 2021; 155:105372. [PMID: 33932557 DOI: 10.1016/j.nbd.2021.105372] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) surgery offers a unique opportunity to record local field potentials (LFPs), the electrophysiological population activity of neurons surrounding the depth electrode in the target area. With direct access to the subcortical activity, LFP research has provided valuable insight into disease mechanisms and cognitive processes and inspired the advent of adaptive DBS for Parkinson's disease (PD). A frequency-based framework is usually employed to interpret the implications of LFP signatures in LFP studies on PD. This approach standardizes the methodology, simplifies the interpretation of LFP patterns, and makes the results comparable across studies. Importantly, previous works have found that activity patterns do not represent disease-specific activity but rather symptom-specific or task-specific neuronal signatures that relate to the current motor, cognitive or emotional state of the patient and the underlying disease. In the present review, we aim to highlight distinguishing features of frequency-specific activities, mainly within the motor domain, recorded from DBS electrodes in patients with PD. Associations of the commonly reported frequency bands (delta, theta, alpha, beta, gamma, and high-frequency oscillations) to motor signs are discussed with respect to band-related phenomena such as individual tremor and high/low beta frequency activity, as well as dynamic transients of beta bursts. We provide an overview on how electrophysiology research in DBS patients has revealed and will continuously reveal new information about pathophysiology, symptoms, and behavior, e.g., when combining deep LFP and surface electrocorticography recordings.
Collapse
Affiliation(s)
- Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yin Jiang
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charite´ Campus Mitte, Charite´ - University Medicine Berlin, Berlin, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charite´ Campus Mitte, Charite´ - University Medicine Berlin, Berlin, Germany; Berlin School of Mind and Brain, Charité - Universitätsmedizin Berlin, Unter den Linden 6, 10099 Berlin, Germany; NeuroCure, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
12
|
Marceglia S, Prenassi M, Galbiati TF, Porta M, Zekaj E, Priori A, Servello D. Thalamic Local Field Potentials Are Related to Long-Term DBS Effects in Tourette Syndrome. Front Neurol 2021; 12:578324. [PMID: 33658970 PMCID: PMC7917178 DOI: 10.3389/fneur.2021.578324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Local field potential (LFP) recordings helped to clarify the pathophysiology of Tourette syndrome (TS) and to define new strategies for deep brain stimulation (DBS) treatment for refractory TS, based on the delivery of stimulation in accordance with changes in the electrical activity of the DBS target area. However, there is little evidence on the relationship between LFP pattern and DBS outcomes in TS. Objective: To investigate the relationship between LFP oscillations and DBS effects on tics and on obsessive compulsive behavior (OCB) comorbidities. Methods: We retrospectively analyzed clinical data and LFP recordings from 17 patients treated with DBS of the centromedian-parafascicular/ventralis oralis (CM-Pf/VO) complex, and followed for more several years after DBS in the treating center. In these patients, LFPs were recorded either in the acute setting (3–5 days after DBS electrode implant) or in the chronic setting (during impulse generator replacement surgery). LFP oscillations were correlated with the Yale Global Tic Severity Scale (YGTSS) and the Yale–Brown Obsessive–Compulsive Scale (Y-BOCS) collected at baseline (before DBS surgery), 1 year after DBS, and at the last follow-up available. Results: We found that, at baseline, in the acute setting, the power of the oscillations included in the 5–15-Hz band, previously identified as TS biomarker, is correlated with the pathophysiology of tics, being significantly correlated with total YGTSS before DBS (Spearman's ρ = 0.701, p = 0.011). The power in the 5–15-Hz band was also correlated with the improvement in Y-BOCS after 1 year of DBS (Spearman's ρ = −0.587, p = 0.045), thus suggesting a relationship with the DBS effects on OCB comorbidities. Conclusions: Our observations confirm that the low-frequency (5–15-Hz) band is a significant biomarker of TS, being related to the severity of tics and, also to the long-term response on OCBs. This represents a step toward both the understanding of the mechanisms underlying DBS effects in TS and the development of adaptive DBS strategies.
Collapse
Affiliation(s)
- Sara Marceglia
- Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Trieste, Italy.,Unità Operativa Neurofisiopatologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Prenassi
- Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Trieste, Italy.,Unità Operativa Neurofisiopatologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso F Galbiati
- Functional Neurosurgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Hospital, Milan, Italy
| | - Mauro Porta
- Functional Neurosurgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Hospital, Milan, Italy
| | - Edvin Zekaj
- Functional Neurosurgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Hospital, Milan, Italy.,"Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan Medical School, Milan, Italy
| | - Alberto Priori
- "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan Medical School, Milan, Italy
| | - Domenico Servello
- Functional Neurosurgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Hospital, Milan, Italy
| |
Collapse
|
13
|
Bočková M, Lamoš M, Klimeš P, Jurák P, Halámek J, Goldemundová S, Baláž M, Rektor I. Suboptimal response to STN-DBS in Parkinson’s disease can be identified via reaction times in a motor cognitive paradigm. J Neural Transm (Vienna) 2020; 127:1579-1588. [DOI: 10.1007/s00702-020-02254-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
|
14
|
Drummond NM, Chen R. Deep brain stimulation and recordings: Insights into the contributions of subthalamic nucleus in cognition. Neuroimage 2020; 222:117300. [PMID: 32828919 DOI: 10.1016/j.neuroimage.2020.117300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/28/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Recent progress in targeted interrogation of basal ganglia structures and networks with deep brain stimulation in humans has provided insights into the complex functions the subthalamic nucleus (STN). Beyond the traditional role of the STN in modulating motor function, recognition of its role in cognition was initially fueled by side effects seen with STN DBS and later revealed with behavioral and electrophysiological studies. Anatomical, clinical, and electrophysiological data converge on the view that the STN is a pivotal node linking cognitive and motor processes. The goal of this review is to synthesize the literature to date that used DBS to examine the contributions of the STN to motor and non-motor cognitive functions and control. Multiple modalities of research have provided us with an enhanced understanding of the STN and reveal that it is critically involved in motor and non-motor inhibition, decision-making, motivation and emotion. Understanding the role of the STN in cognition can enhance the therapeutic efficacy and selectivity not only for existing applications of DBS, but also in the development of therapeutic strategies to stimulate aberrant circuits to treat non-motor symptoms of Parkinson's disease and other disorders.
Collapse
Affiliation(s)
- Neil M Drummond
- Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada.
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
15
|
Breysse E, Meffre J, Pelloux Y, Winstanley CA, Baunez C. Decreased risk‐taking and loss‐chasing after subthalamic nucleus lesion in rats. Eur J Neurosci 2020; 53:2362-2375. [DOI: 10.1111/ejn.14895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Emmanuel Breysse
- Institut de Neurosciences de la Timone UMR7289 CNRS & Aix‐Marseille Université Marseille France
| | - Julie Meffre
- Institut de Neurosciences de la Timone UMR7289 CNRS & Aix‐Marseille Université Marseille France
- Laboratoire de Neurosciences Cognitives UMR7289 CNRS & Aix‐Marseille Université Marseille France
| | - Yann Pelloux
- Institut de Neurosciences de la Timone UMR7289 CNRS & Aix‐Marseille Université Marseille France
- IIT Genoa Italy
| | - Catharine A. Winstanley
- Department of Psychology Djavad Mowafaghian Centre for Brain HealthUniversity of British Columbia Vancouver BC Canada
| | - Christelle Baunez
- Institut de Neurosciences de la Timone UMR7289 CNRS & Aix‐Marseille Université Marseille France
| |
Collapse
|
16
|
van Wijk BCM, Alkemade A, Forstmann BU. Functional segregation and integration within the human subthalamic nucleus from a micro- and meso-level perspective. Cortex 2020; 131:103-113. [PMID: 32823130 DOI: 10.1016/j.cortex.2020.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022]
Abstract
The subthalamic nucleus (STN) is a core basal ganglia structure involved in the control of motor, cognitive, motivational and affective functions. The (challenged) tripartite subdivision hypothesis places these functions into distinct sensorimotor, cognitive/associative, and limbic subregions based on the topography of cortical projections. To a large extent, this hypothesis is used to motivate the choice of target coordinates for implantation of deep brain stimulation electrodes for treatment of neurological and psychiatric disorders. Yet, the parallel organization of basal ganglia circuits has been known to allow considerable cross-talk, which might contribute to the occurrence of neuropsychiatric side effects when stimulating the dorsolateral, putative sensorimotor, part of the STN for treatment of Parkinson's disease. Any functional segregation within the STN is expected to be reflected both at micro-level microscopy and meso-level neural population activity. As such, we review the current empirical evidence from anterograde tracing and immunocytochemistry studies and from local field potential recordings for delineating the STN into distinct subregions. The spatial distribution of immunoreactivity presents as a combination of gradients, and although neural activity in distinct frequency bands appears spatially clustered, there is substantial overlap in peak locations. We argue that regional specialization without sharply defined borders is likely most representative of the STN's functional organization.
Collapse
Affiliation(s)
- Bernadette C M van Wijk
- Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, the Netherlands.
| | - Anneke Alkemade
- Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, the Netherlands
| | - Birte U Forstmann
- Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, the Netherlands
| |
Collapse
|
17
|
Haagensen BN, Herz DM, Meder D, Madsen KH, Løkkegaard A, Siebner HR. Linking brain activity during sequential gambling to impulse control in Parkinson's disease. NEUROIMAGE-CLINICAL 2020; 27:102330. [PMID: 32688307 PMCID: PMC7369593 DOI: 10.1016/j.nicl.2020.102330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/29/2022]
Abstract
Dopaminergic treatment may impair the ability to suppress impulsive behaviours in patients with Parkinson's disease, triggering impulse control disorders. It is unclear how dopaminergic medication affects the neural networks that contribute to withholding inappropriate actions. To address this question, we mapped task-related brain activity with whole-brain functional magnetic resonance imaging at 3 Tesla in 26 patients with Parkinson's disease. Patients performed a sequential gambling task while being ON and OFF their regular dopaminergic treatment. During a gambling round, patients repeatedly decided between the option to continue with gambling and accumulate more monetary reward under increasing risk or the option to bank the current balance and start a new round. 13 patients had an impulse control disorder (ICD + group). These patients did not differ in risk-taking attitude during sequential gambling from 13 patients without impulse control disorder (ICD - group), but they displayed differences in gambling-related activity in cortico-subcortical brain areas supporting inhibitory control. First, the ICD + group showed reduced "continue-to-gamble" activity in right inferior frontal gyrus and subthalamic nucleus. Second, the individual risk-attitude scaled positively with "continue-to-gamble" activity in right subthalamic nucleus and striatum in the ICD - group only. Third, ICD + patients differed in their functional neural responses to dopaminergic treatment from ICD - patients: dopaminergic therapy reduced functional connectivity between inferior frontal gyrus and subthalamic nucleus during "continue-to-gamble" decisions and attenuated striatal responses towards accumulating reward and risk. Together, the medication-independent (trait) and medication-related (state) differences in neural activity may set a permissive stage for the emergence of impulse control disorders during dopamine replacement therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Brian N Haagensen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Damian M Herz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Annemette Løkkegaard
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Aristieta A, Ruiz-Ortega J, Morera-Herreras T, Miguelez C, Ugedo L. Acute L-DOPA administration reverses changes in firing pattern and low frequency oscillatory activity in the entopeduncular nucleus from long term L-DOPA treated 6-OHDA-lesioned rats. Exp Neurol 2019; 322:113036. [DOI: 10.1016/j.expneurol.2019.113036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 01/06/2023]
|
19
|
Rappel P, Grosberg S, Arkadir D, Linetsky E, Abu Snineh M, Bick AS, Tamir I, Valsky D, Marmor O, Abo Foul Y, Peled O, Gilad M, Daudi C, Ben‐Naim S, Bergman H, Israel Z, Eitan R. Theta‐alpha Oscillations Characterize Emotional Subregion in the Human Ventral Subthalamic Nucleus. Mov Disord 2019; 35:337-343. [DOI: 10.1002/mds.27910] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/22/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Pnina Rappel
- Department of Medical Neurobiology (Physiology) Institute of Medical Research–Israel‐Canada, the Hebrew University‐Hadassah Medical School Jerusalem Israel
- The Edmond and Lily Safra Center for Brain Research the Hebrew University Jerusalem Israel
| | - Shai Grosberg
- Department of Medical Neurobiology (Physiology) Institute of Medical Research–Israel‐Canada, the Hebrew University‐Hadassah Medical School Jerusalem Israel
| | - David Arkadir
- The Brain Division Hadassah–Hebrew University Medical Center Jerusalem Israel
| | - Eduard Linetsky
- The Brain Division Hadassah–Hebrew University Medical Center Jerusalem Israel
| | - Muneer Abu Snineh
- The Brain Division Hadassah–Hebrew University Medical Center Jerusalem Israel
| | - Atira S. Bick
- Department of Medical Neurobiology (Physiology) Institute of Medical Research–Israel‐Canada, the Hebrew University‐Hadassah Medical School Jerusalem Israel
- The Brain Division Hadassah–Hebrew University Medical Center Jerusalem Israel
| | - Idit Tamir
- The Brain Division Hadassah–Hebrew University Medical Center Jerusalem Israel
- The Center for Functional and Restorative Neurosurgery Hadassah‐Hebrew University Medical Center Jerusalem Israel
- Department of Neurosurgery University of California San Francisco San Francisco California USA
| | - Dan Valsky
- Department of Medical Neurobiology (Physiology) Institute of Medical Research–Israel‐Canada, the Hebrew University‐Hadassah Medical School Jerusalem Israel
- The Edmond and Lily Safra Center for Brain Research the Hebrew University Jerusalem Israel
| | - Odeya Marmor
- Department of Medical Neurobiology (Physiology) Institute of Medical Research–Israel‐Canada, the Hebrew University‐Hadassah Medical School Jerusalem Israel
- The Edmond and Lily Safra Center for Brain Research the Hebrew University Jerusalem Israel
| | - Yasmin Abo Foul
- The Brain Division Hadassah–Hebrew University Medical Center Jerusalem Israel
| | - Or Peled
- The Brain Division Hadassah–Hebrew University Medical Center Jerusalem Israel
| | - Moran Gilad
- The Brain Division Hadassah–Hebrew University Medical Center Jerusalem Israel
| | - Chen Daudi
- The Brain Division Hadassah–Hebrew University Medical Center Jerusalem Israel
| | - Shiri Ben‐Naim
- The Brain Division Hadassah–Hebrew University Medical Center Jerusalem Israel
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology) Institute of Medical Research–Israel‐Canada, the Hebrew University‐Hadassah Medical School Jerusalem Israel
- The Edmond and Lily Safra Center for Brain Research the Hebrew University Jerusalem Israel
- The Center for Functional and Restorative Neurosurgery Hadassah‐Hebrew University Medical Center Jerusalem Israel
| | - Zvi Israel
- The Brain Division Hadassah–Hebrew University Medical Center Jerusalem Israel
- The Center for Functional and Restorative Neurosurgery Hadassah‐Hebrew University Medical Center Jerusalem Israel
| | - Renana Eitan
- Department of Medical Neurobiology (Physiology) Institute of Medical Research–Israel‐Canada, the Hebrew University‐Hadassah Medical School Jerusalem Israel
- The Brain Division Hadassah–Hebrew University Medical Center Jerusalem Israel
- Jerusalem Mental Health Center Hebrew University Medical School Jerusalem Israel
- Functional Neuroimaging Laboratory, Brigham and Women's Hospital, Department of Psychiatry Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
20
|
Duprez J, Houvenaghel JF, Dondaine T, Péron J, Haegelen C, Drapier S, Modolo J, Jannin P, Vérin M, Sauleau P. Subthalamic nucleus local field potentials recordings reveal subtle effects of promised reward during conflict resolution in Parkinson's disease. Neuroimage 2019; 197:232-242. [DOI: 10.1016/j.neuroimage.2019.04.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/20/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022] Open
|
21
|
Vitale C, Amboni M, Erro R, Picillo M, Pellecchia MT, Barone P, Trojano L, Santangelo G. Parkinson’s disease management and impulse control disorders: current state and future perspectives. Expert Rev Neurother 2019; 19:495-508. [DOI: 10.1080/14737175.2019.1620603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Carmine Vitale
- Department of Motor Sciences and Health, University “Parthenope”, Naples, Italy
| | - Marianna Amboni
- Neurodegenerative Diseases Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Roberto Erro
- Neurodegenerative Diseases Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Marina Picillo
- Neurodegenerative Diseases Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Maria Teresa Pellecchia
- Neurodegenerative Diseases Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Paolo Barone
- Neurodegenerative Diseases Center, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Luigi Trojano
- Department of Psychology, University “Luigi Vanvitelli”, Caserta, Italy
| | | |
Collapse
|
22
|
Eisinger RS, Ramirez-Zamora A, Carbunaru S, Ptak B, Peng-Chen Z, Okun MS, Gunduz A. Medications, Deep Brain Stimulation, and Other Factors Influencing Impulse Control Disorders in Parkinson's Disease. Front Neurol 2019; 10:86. [PMID: 30863353 PMCID: PMC6399407 DOI: 10.3389/fneur.2019.00086] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/22/2019] [Indexed: 12/18/2022] Open
Abstract
Impulse control disorders (ICDs) in Parkinson's disease (PD) have a high cumulative incidence and negatively impact quality of life. ICDs are influenced by a complex interaction of multiple factors. Although it is now well-recognized that dopaminergic treatments and especially dopamine agonists underpin many ICDs, medications alone are not the sole cause. Susceptibility to ICD is increased in the setting of PD. While causality can be challenging to ascertain, a wide range of modifiable and non-modifiable risk factors have been linked to ICDs. Common characteristics of PD patients with ICDs have been consistently identified across many studies; for example, males with an early age of PD onset and dopamine agonist use have a higher risk of ICD. However, not all cases of ICDs in PD can be directly attributable to dopamine, and studies have concluded that additional factors such as genetics, smoking, and/or depression may be more predictive. Beyond dopamine, other ICD associations have been described but remain difficult to explain, including deep brain stimulation surgery, especially in the setting of a reduction in dopaminergic medication use. In this review, we will summarize the demographic, genetic, behavioral, and clinical contributions potentially influencing ICD onset in PD. These associations may inspire future preventative or therapeutic strategies.
Collapse
Affiliation(s)
- Robert S. Eisinger
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Hospital Padre Hurtado, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Samuel Carbunaru
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Brandon Ptak
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Zhongxing Peng-Chen
- Hospital Padre Hurtado, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Michael S. Okun
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Aysegul Gunduz
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
23
|
Bočková M, Rektor I. Impairment of brain functions in Parkinson’s disease reflected by alterations in neural connectivity in EEG studies: A viewpoint. Clin Neurophysiol 2019; 130:239-247. [DOI: 10.1016/j.clinph.2018.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 11/26/2022]
|
24
|
A 7-year observation of the effect of subthalamic deep brain stimulation on impulse control disorder in patients with Parkinson's disease. Parkinsonism Relat Disord 2018; 56:3-8. [DOI: 10.1016/j.parkreldis.2018.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/12/2018] [Accepted: 07/19/2018] [Indexed: 11/18/2022]
|
25
|
Eisinger RS, Urdaneta ME, Foote KD, Okun MS, Gunduz A. Non-motor Characterization of the Basal Ganglia: Evidence From Human and Non-human Primate Electrophysiology. Front Neurosci 2018; 12:385. [PMID: 30026679 PMCID: PMC6041403 DOI: 10.3389/fnins.2018.00385] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/22/2018] [Indexed: 12/02/2022] Open
Abstract
Although the basal ganglia have been implicated in a growing list of human behaviors, they include some of the least understood nuclei in the brain. For several decades studies have employed numerous methodologies to uncover evidence pointing to the basal ganglia as a hub of both motor and non-motor function. Recently, new electrophysiological characterization of the basal ganglia in humans has become possible through direct access to these deep structures as part of routine neurosurgery. Electrophysiological approaches for identifying non-motor function have the potential to unlock a deeper understanding of pathways that may inform clinical interventions and particularly neuromodulation. Various electrophysiological modalities can also be combined to reveal functional connections between the basal ganglia and traditional structures throughout the neocortex that have been linked to non-motor behavior. Several reviews have previously summarized evidence for non-motor function in the basal ganglia stemming from behavioral, clinical, computational, imaging, and non-primate animal studies; in this review, instead we turn to electrophysiological studies of non-human primates and humans. We begin by introducing common electrophysiological methodologies for basal ganglia investigation, and then we discuss studies across numerous non-motor domains–emotion, response inhibition, conflict, decision-making, error-detection and surprise, reward processing, language, and time processing. We discuss the limitations of current approaches and highlight the current state of the information.
Collapse
Affiliation(s)
- Robert S Eisinger
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Morgan E Urdaneta
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Aysegul Gunduz
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
26
|
Bonnevie T, Zaghloul KA. The Subthalamic Nucleus: Unravelling New Roles and Mechanisms in the Control of Action. Neuroscientist 2018; 25:48-64. [PMID: 29557710 DOI: 10.1177/1073858418763594] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
How do we decide what we do? This is the essence of action control, the process of selecting the most appropriate response among multiple possible choices. Suboptimal action control can involve a failure to initiate or adapt actions, or conversely it can involve making actions impulsively. There has been an increasing focus on the specific role of the subthalamic nucleus (STN) in action control. This has been fueled by the clinical relevance of this basal ganglia nucleus as a target for deep brain stimulation (DBS), primarily in Parkinson's disease but also in obsessive-compulsive disorder. The context of DBS has opened windows to study STN function in ways that link neuroscientific and clinical fields closely together, contributing to an exceptionally high level of two-way translation. In this review, we first outline the role of the STN in both motor and nonmotor action control, and then discuss how these functions might be implemented by neuronal activity in the STN. Gaining a better understanding of these topics will not only provide important insights into the neurophysiology of action control but also the pathophysiological mechanisms relevant for several brain disorders and their therapies.
Collapse
Affiliation(s)
- Tora Bonnevie
- 1 Department of Neuromedicine and Movement Science, NTNU, Trondheim, Norway.,2 Neuroclinic, Trondheim University Hospital, Trondheim, Norway.,3 Kavli Institute for Systems Neuroscience, NTNU, Trondheim, Norway
| | - Kareem A Zaghloul
- 4 Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Subthalamic Neural Activity Patterns Anticipate Economic Risk Decisions in Gambling. eNeuro 2018; 5:eN-NWR-0366-17. [PMID: 29445770 PMCID: PMC5810044 DOI: 10.1523/eneuro.0366-17.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
Economic decision-making is disrupted in individuals with gambling disorder, an addictive behavior observed in Parkinson's disease (PD) patients receiving dopaminergic therapy. The subthalamic nucleus (STN) is involved in the inhibition of impulsive behaviors; however, its role in impulse control disorders and addiction is still unclear. Here, we recorded STN local field potentials (LFPs) in PD patients with and without gambling disorder during an economic decision-making task. Reaction times analysis showed that for all patients, the decision whether to risk preceded task onset. We compared then for both groups the STN LFP preceding high- and low-risk economic decisions. We found that risk avoidance in gamblers correlated with larger STN LFP low-frequency (<12-Hz) fluctuations preceding task onset. In particular, the amplitude of low-frequency LFP fluctuations carried significant information about future decisions. Decisions of patients not affected by gambling disorder were instead not correlated with pretask STN LFP. Our results suggest that STN activity preceding task onset affects risk decisions by preemptively inhibiting attraction to high but unlikely rewards in favor of a long-term payoff.
Collapse
|
28
|
Zavala B, Damera S, Dong JW, Lungu C, Brown P, Zaghloul KA. Human Subthalamic Nucleus Theta and Beta Oscillations Entrain Neuronal Firing During Sensorimotor Conflict. Cereb Cortex 2018; 27:496-508. [PMID: 26494798 DOI: 10.1093/cercor/bhv244] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent evidence has suggested that prefrontal cortical structures may inhibit impulsive actions during conflict through activation of the subthalamic nucleus (STN). Consistent with this hypothesis, deep brain stimulation to the STN has been associated with altered prefrontal cortical activity and impaired response inhibition. The interactions between oscillatory activity in the STN and its presumably antikinetic neuronal spiking, however, remain poorly understood. Here, we simultaneously recorded intraoperative local field potential and spiking activity from the human STN as participants performed a sensorimotor action selection task involving conflict. We identified several STN neuronal response types that exhibited different temporal dynamics during the task. Some neurons showed early, cue-related firing rate increases that remained elevated longer during high conflict trials, whereas other neurons showed late, movement-related firing rate increases. Notably, the high conflict trials were associated with an entrainment of individual neurons by theta- and beta-band oscillations, both of which have been observed in cortical structures involved in response inhibition. Our data suggest that frequency-specific activity in the beta and theta bands influence STN firing to inhibit impulsivity during conflict.
Collapse
Affiliation(s)
- Baltazar Zavala
- Surgical Neurology Branch.,Experimental Neurology Group, Nuffield Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | - Codrin Lungu
- Office of Clinical Director, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Brown
- Experimental Neurology Group, Nuffield Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.,Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Oxford OX1 3TH, UK
| | | |
Collapse
|
29
|
Marceglia S, Rosa M, Servello D, Porta M, Barbieri S, Moro E, Priori A. Adaptive Deep Brain Stimulation (aDBS) for Tourette Syndrome. Brain Sci 2017; 8:E4. [PMID: 29295486 PMCID: PMC5789335 DOI: 10.3390/brainsci8010004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/16/2022] Open
Abstract
Deep brain stimulation (DBS) has emerged as a novel therapy for the treatment of several movement and neuropsychiatric disorders, and may also be suitable for the treatment of Tourette syndrome (TS). The main DBS targets used to date in patients with TS are located within the basal ganglia-thalamo-cortical circuit involved in the pathophysiology of this syndrome. They include the ventralis oralis/centromedian-parafascicular (Vo/CM-Pf) nucleus of the thalamus and the nucleus accumbens. Current DBS treatments deliver continuous electrical stimulation and are not designed to adapt to the patient's symptoms, thereby contributing to unwanted side effects. Moreover, continuous DBS can lead to rapid battery depletion, which necessitates frequent battery replacement surgeries. Adaptive deep brain stimulation (aDBS), which is controlled based on neurophysiological biomarkers, is considered one of the most promising approaches to optimize clinical benefits and to limit the side effects of DBS. aDBS consists of a closed-loop system designed to measure and analyse a control variable reflecting the patient's clinical condition and to modify on-line stimulation settings to improve treatment efficacy. Local field potentials (LFPs), which are sums of pre- and post-synaptic activity arising from large neuronal populations, directly recorded from electrodes implanted for DBS can theoretically represent a reliable correlate of clinical status in patients with TS. The well-established LFP-clinical correlations in patients with Parkinson's disease reported in the last few years provide the rationale for developing and implementing new aDBS devices whose efficacies are under evaluation in humans. Only a few studies have investigated LFP activity recorded from DBS target structures and the relationship of this activity to clinical symptoms in TS. Here, we review the available literature supporting the feasibility of an LFP-based aDBS approach in patients with TS. In addition, to increase such knowledge, we report explorative findings regarding LFP data recently acquired and analysed in patients with TS after DBS electrode implantation at rest, during voluntary and involuntary movements (tics), and during ongoing DBS. Data available up to now suggest that patients with TS have oscillatory patterns specifically associated with the part of the brain they are recorded from, and thereby with clinical manifestations. The Vo/CM-Pf nucleus of the thalamus is involved in movement execution and the pathophysiology of TS. Moreover, the oscillatory patterns in TS are specifically modulated by DBS treatment, as reflected by improvements in TS symptoms. These findings suggest that LFPs recorded from DBS targets may be used to control new aDBS devices capable of adaptive stimulation responsive to the symptoms of TS.
Collapse
Affiliation(s)
- Sara Marceglia
- Clinical Center for Neurostimulation, Neurotechnology and Movement Disorders, Fondazione Istituto Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan 20122, Italy.
- Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Trieste 34127, Italy.
| | - Manuela Rosa
- Clinical Center for Neurostimulation, Neurotechnology and Movement Disorders, Fondazione Istituto Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan 20122, Italy.
| | - Domenico Servello
- Functional Neurosurgery Unit, Galeazzi Hospital and Tourette Center, Milan 20161, Italy.
| | - Mauro Porta
- Functional Neurosurgery Unit, Galeazzi Hospital and Tourette Center, Milan 20161, Italy.
| | - Sergio Barbieri
- Clinical Center for Neurostimulation, Neurotechnology and Movement Disorders, Fondazione Istituto Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan 20122, Italy.
| | - Elena Moro
- Division of Neurology, Centre Hospitalier Universitaire de Grenoble, CS 10217, 38043 Grenoble, France.
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan 20142 , Italy.
- Department of Health Sciences, University of Milan & ASST Santi Paolo e Carlo, Milan 20142, Italy.
| |
Collapse
|
30
|
Weintraub D, Claassen DO. Impulse Control and Related Disorders in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:679-717. [PMID: 28802938 DOI: 10.1016/bs.irn.2017.04.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Impulse control disorders (ICDs), such as compulsive gambling, buying, sexual, and eating behaviors, are a serious and increasingly recognized complication in Parkinson's disease (PD), occurring in up to 20% of PD patients over the course of their illness. Related behaviors include punding (stereotyped, repetitive, purposeless behaviors), dopamine dysregulation syndrome (DDS) (compulsive medication overuse), and hobbyism (e.g., compulsive internet use, artistic endeavors, and writing). These disorders have a significant impact on quality of life and function, strain interpersonal relationships, and worsen caregiver burden, and are associated with significant psychiatric comorbidity. ICDs have been most closely related to the use of dopamine agonists (DAs), while DDS is primarily associated with shorter acting, higher potency dopamine replacement therapy (DRT), such as levodopa. However, in preliminary research ICDs have also been reported to occur with monoamine oxidase inhibitor-B and amantadine treatment, and after deep brain stimulation (DBS) surgery. Other risk factors for ICDs may include sex (e.g., male sex for compulsive sexual behavior, and female sex for compulsive buying behavior); younger age overall at PD onset; a pre-PD history of an ICD; personal or family history of substance abuse, bipolar disorder, or gambling problems; and impulsive personality traits. Dysregulation of the mesocorticolimbic dopamine system is thought to be the major neurobiological substrate for ICDs in PD, but there is preliminary evidence for alterations in opiate and serotonin systems too. The primary treatment of ICDs in PD is discontinuation of the offending treatment, but not all patients can tolerate this due to worsening motor symptoms or DA withdrawal syndrome. While psychiatric medications and psychosocial treatments are frequently used to treat ICDs in the general population, there is limited empirical evidence for their use in PD, so it is critical for patients to be monitored closely for ICDs from disease onset and routine throughout its course. In the future, it may be possible to use a precision medicine approach to decrease the incidence of ICDs in PD by avoiding DA use in patients determined to be at highest risk based on their clinical and neurobiological (e.g., motor presentation, behavioral measures of medication response, genetics, dopamine transporter neuroimaging) profile. Additionally, as empirically validated treatments for ICDs and similar disorders (e.g., substance use disorders) emerge, it will also be important to examine their efficacy and tolerability in individuals with comorbid PD.
Collapse
Affiliation(s)
- Daniel Weintraub
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States; Parkinson's Disease and Mental Illness Research, Education and Clinical Centers, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States.
| | - Daniel O Claassen
- Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
31
|
Bočková M, Chládek J, Jurák P, Halámek J, Rapcsak SZ, Baláž M, Chrastina J, Rektor I. Oscillatory reactivity to effortful cognitive processing in the subthalamic nucleus and internal pallidum: a depth electrode EEG study. J Neural Transm (Vienna) 2017; 124:841-852. [DOI: 10.1007/s00702-017-1719-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
|
32
|
Impulse control disorders and levodopa-induced dyskinesias in Parkinson's disease: an update. Lancet Neurol 2017; 16:238-250. [DOI: 10.1016/s1474-4422(17)30004-2] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/28/2016] [Accepted: 01/06/2017] [Indexed: 02/03/2023]
|
33
|
Risk of Infection After Local Field Potential Recording from Externalized Deep Brain Stimulation Leads in Parkinson's Disease. World Neurosurg 2017; 97:64-69. [DOI: 10.1016/j.wneu.2016.09.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022]
|
34
|
Heiden P, Heinz A, Romanczuk-Seiferth N. Pathological gambling in Parkinson's disease: what are the risk factors and what is the role of impulsivity? Eur J Neurosci 2016; 45:67-72. [PMID: 27623191 PMCID: PMC5215459 DOI: 10.1111/ejn.13396] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/24/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023]
Abstract
The incidence of pathological gambling in Parkinson's patients is significantly greater than in the general population. A correlation has been observed between dopamine agonist medication and the development of pathological gambling. However, scientists conjecture that the affected patients have underlying risk factors. Studies analysing Parkinson's patients have detected that patients who developed pathological gambling are younger, score higher on novelty‐seeking tests, are more impulsive and are more likely to have a personal or family history of alcohol addiction. In addition, some genetic variations have been associated with the susceptibility of developing pathological gambling, which include mutations of DRD3, 5‐HTTLPR and GRIN2B. Studies focusing on neurofunctional discrepancies between Parkinson's patients with and without pathological gambling have found increased functional activation and dopamine release in regions associated with the mesolimbic reward system. Furthermore, there is also evidence showing increased processing of reward and decreased activation elicited by punishment, suggesting altered learning processes. Furthermore, the role of deep brain stimulation of the nucleus subthalamicus (STN DBS) is controversial. In most Parkinson's patients, pathological gambling resolved after the initiation of the STN DBS, which might be explained by discontinuation or decrease in dopamine agonist medication. However, it has been also shown that some patients are more impulsive while the STN DBS is activated. These differences may depend on the DBS localization in the more limbic or motor part of the STN and their regulative effects on impulsivity. Further research is needed to clarify susceptibility factors for the development of pathological gambling in Parkinson's patients.
Collapse
Affiliation(s)
- Petra Heiden
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
35
|
Masiero M, Riva S, Oliveri S, Fioretti C, Pravettoni G. Optimistic bias in young adults for cancer, cardiovascular and respiratory diseases: A pilot study on smokers and drinkers. J Health Psychol 2016; 23:645-656. [PMID: 27624614 DOI: 10.1177/1359105316667796] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Optimistic bias defines the tendency for human beings to underrate risk when it pertains to themselves compared with their view of risk pertaining to other people in the same conditions. The aim of this work is to investigate the optimistic bias in risk perception and health-related behaviours for three specific conditions in a young adult sample: cancer, respiratory disorders and cardiovascular diseases. Young adults showed an optimistic bias related to cancer, and to cardiovascular diseases. Our findings suggest that optimistic bias is linked to specific behavioural patterns, largely widespread in young adults, such as tobacco cigarette smoking and alcohol consumption.
Collapse
Affiliation(s)
- Marianna Masiero
- 1 University of Milan, Italy.,2 European Institute of Oncology (IEO), Italy
| | - Silvia Riva
- 1 University of Milan, Italy.,2 European Institute of Oncology (IEO), Italy
| | - Serena Oliveri
- 1 University of Milan, Italy.,2 European Institute of Oncology (IEO), Italy
| | | | | |
Collapse
|
36
|
A fronto–striato–subthalamic–pallidal network for goal-directed and habitual inhibition. Nat Rev Neurosci 2015; 16:719-32. [DOI: 10.1038/nrn4038] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Connolly AT, Muralidharan A, Hendrix C, Johnson L, Gupta R, Stanslaski S, Denison T, Baker KB, Vitek JL, Johnson MD. Local field potential recordings in a non-human primate model of Parkinsons disease using the Activa PC + S neurostimulator. J Neural Eng 2015; 12:066012. [PMID: 26469737 DOI: 10.1088/1741-2560/12/6/066012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Using the Medtronic Activa® PC + S system, this study investigated how passive joint manipulation, reaching behavior, and deep brain stimulation (DBS) modulate local field potential (LFP) activity in the subthalamic nucleus (STN) and globus pallidus (GP). APPROACH Five non-human primates were implanted unilaterally with one or more DBS leads. LFPs were collected in montage recordings during resting state conditions and during motor tasks that facilitate the expression of parkinsonian motor signs. These recordings were made in the naïve state in one subject, in the parkinsonian state in two subjects, and in both naïve and parkinsonian states in two subjects. MAIN RESULTS LFPs measured at rest were consistent over time for a given recording location and parkinsonian state in a given subject; however, LFPs were highly variable between subjects, between and within recording locations, and across parkinsonian states. LFPs in both naïve and parkinsonian states across all recorded nuclei contained a spectral peak in the beta band (10-30 Hz). Moreover, the spectral content of recorded LFPs was modulated by passive and active movement of the subjects' limbs. LFPs recorded during a cued-reaching task displayed task-related beta desynchronization in STN and GP. The bidirectional capabilities of the Activa® PC + S also allowed for recording LFPs while delivering DBS. The therapeutic effect of STN DBS on parkinsonian rigidity outlasted stimulation for 30-60 s, but there was no correlation with beta band power. SIGNIFICANCE This study emphasizes (1) the variability in spontaneous LFPs amongst subjects and (2) the value of using the Activa® PC + S system to record neural data in the context of behavioral tasks that allow one to evaluate a subject's symptomatology.
Collapse
|
38
|
Espinosa-Parrilla JF, Baunez C, Apicella P. Modulation of neuronal activity by reward identity in the monkey subthalamic nucleus. Eur J Neurosci 2015; 42:1705-17. [PMID: 25943702 DOI: 10.1111/ejn.12938] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/27/2022]
Abstract
The subthalamic nucleus (STN) has been argued to be an important component of reward-sensitive basal ganglia circuitry. This view is especially supported by the behavioral changes observed after STN inactivation, which could reflect impairments in the motivational control of action. However, it is still unclear how the STN integrates reward information and to what extent such integration correlates with behavior. In this study, the response properties of STN neurons in monkeys performing reaching movements with a cue predicting the identity of an upcoming liquid reward (juice or water) were investigated. Although the timing of movements reliably indicated that monkeys had greater motivation for juice than water, rarely did task-related changes in neuronal activity depend on the nature of the expected reward. Conversely, when presented with a choice of selecting a response that leads to juice or water delivery, animals showed a clear preference for juice and more than half of the neurons were differentially modulated dependent on the reward obtained, mostly after the monkeys's overt choice of action. Under such circumstances, an increase in activity specifically followed the action outcomes across the population of neurons when monkeys failed to choose the juice reward. These results indicate that STN neurons encode whether or not a preferred reward had been received when a choice between response alternatives is required. This differential neuronal activity might reflect the participation of the STN in evaluating the reward value of chosen actions, thus highlighting its contribution to decision-making processes.
Collapse
Affiliation(s)
| | - Christelle Baunez
- Institut de Neurosciences de la Timone UMR 7289, CNRS, Aix Marseille Université, Marseille, 13385, France
| | - Paul Apicella
- Institut de Neurosciences de la Timone UMR 7289, CNRS, Aix Marseille Université, Marseille, 13385, France
| |
Collapse
|
39
|
Fumagalli M, Rosa M, Giannicola G, Marceglia S, Lucchiari C, Servello D, Franzini A, Pacchetti C, Romito L, Albanese A, Porta M, Pravettoni G, Priori A. Subthalamic involvement in monetary reward and its dysfunction in parkinsonian gamblers. J Neurol Neurosurg Psychiatry 2015; 86:355-8. [PMID: 25016563 DOI: 10.1136/jnnp-2014-307912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Manuela Fumagalli
- Centro Clinico per la Neurostimolazione, le Neurotecnologie ed i Disordini del Movimento, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Rosa
- Centro Clinico per la Neurostimolazione, le Neurotecnologie ed i Disordini del Movimento, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaia Giannicola
- Centro Clinico per la Neurostimolazione, le Neurotecnologie ed i Disordini del Movimento, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Marceglia
- Centro Clinico per la Neurostimolazione, le Neurotecnologie ed i Disordini del Movimento, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudio Lucchiari
- Dipartimento di Economia, Management e Metodi Quantitativi, Università degli Studi di Milano, Milan, Italy
| | - Domenico Servello
- Neurochirurgia Funzionale e Clinica Tourette, IRCCS Galeazzi, Milan, Italy
| | - Angelo Franzini
- Fondazione IRCCS Istituto Nazionale Neurologico Carlo Besta, Milan, Italy
| | - Claudio Pacchetti
- Unità Operativa Parkinson e Disordini del Movimento, IRCCS Istituto Neurologico Mondino, Pavia, Italy
| | - Luigi Romito
- Fondazione IRCCS Istituto Nazionale Neurologico Carlo Besta, Milan, Italy
| | - Alberto Albanese
- Fondazione IRCCS Istituto Nazionale Neurologico Carlo Besta, Milan, Italy
| | - Mauro Porta
- Neurochirurgia Funzionale e Clinica Tourette, IRCCS Galeazzi, Milan, Italy
| | - Gabriella Pravettoni
- Dipartimento di Economia, Management e Metodi Quantitativi, Università degli Studi di Milano, Milan, Italy Unità di Ricerca Applicata per le Scienze Cognitive e Psicologiche, Istituto Europeo di Oncologia, Milan, Italy
| | - Alberto Priori
- Centro Clinico per la Neurostimolazione, le Neurotecnologie ed i Disordini del Movimento, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
40
|
Zavala B, Zaghloul K, Brown P. The subthalamic nucleus, oscillations, and conflict. Mov Disord 2015; 30:328-38. [PMID: 25688872 DOI: 10.1002/mds.26072] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 12/12/2022] Open
Abstract
The subthalamic nucleus (STN), which is currently the most common target for deep brain stimulation (DBS) for Parkinson's disease (PD), has received increased attention over the past few years for the roles it may play in functions beyond simple motor control. In this article, we highlight several of the theoretical, interventional, and electrophysiological studies that have implicated the STN in response inhibition. Most influential among this evidence has been the reported effect of STN DBS in increasing impulsive responses in the laboratory setting. Yet, how this relates to pathological impulsivity in patients' everyday lives remains uncertain.
Collapse
Affiliation(s)
- Baltazar Zavala
- Experimental Neurology Group, Nuffield Department of Clinical Neurology, University of Oxford John Radcliffe Hospital, Oxford, UK; Surgical Neurology Branch, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
41
|
Da Cunha C, Boschen SL, Gómez-A A, Ross EK, Gibson WSJ, Min HK, Lee KH, Blaha CD. Toward sophisticated basal ganglia neuromodulation: Review on basal ganglia deep brain stimulation. Neurosci Biobehav Rev 2015; 58:186-210. [PMID: 25684727 DOI: 10.1016/j.neubiorev.2015.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/01/2015] [Accepted: 02/05/2015] [Indexed: 12/11/2022]
Abstract
This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson's disease, Huntington's disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms.
Collapse
Affiliation(s)
- Claudio Da Cunha
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Suelen L Boschen
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Alexander Gómez-A
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Erika K Ross
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Charles D Blaha
- Department of Psychology, The University of Memphis, Memphis, TN, USA.
| |
Collapse
|
42
|
Jahanshahi M, Obeso I, Baunez C, Alegre M, Krack P. Parkinson's Disease, the Subthalamic Nucleus, Inhibition, and Impulsivity. Mov Disord 2014; 30:128-40. [DOI: 10.1002/mds.26049] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/21/2014] [Accepted: 09/07/2014] [Indexed: 12/14/2022] Open
Affiliation(s)
- Marjan Jahanshahi
- Cognitive Motor Neuroscience Group and Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology; London United Kingdom
| | - Ignacio Obeso
- CINAC, HM-Puerta del Sur, Hospitales de Madrid; CEU-San Pablo University, Móstoles; Madrid Spain
| | - Christelle Baunez
- Basal Ganglia, Motivation and Reward' (BAGAMORE), Institut de Neurosciences de la Timone, UMR7289 CNRS and AMU (Aix Marseille Universite); Marseille France
| | - Manuel Alegre
- Neurophysiology Laboratory, Neuroscience Area, CIMA, University of Navarra; Pamplona Spain
| | - Paul Krack
- INSERM U836, F-38000 Grenoble, France; University Grenoble Alpes, GIN, Grenoble, France, and CHU de Grenoble, Movement Disorder Unit; Grenoble France
| |
Collapse
|
43
|
Huebl J, Spitzer B, Brücke C, Schönecker T, Kupsch A, Alesch F, Schneider GH, Kühn AA. Oscillatory subthalamic nucleus activity is modulated by dopamine during emotional processing in Parkinson's disease. Cortex 2014; 60:69-81. [PMID: 24713195 DOI: 10.1016/j.cortex.2014.02.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/09/2014] [Accepted: 02/12/2014] [Indexed: 11/19/2022]
Abstract
Dopaminergic denervation in Parkinson's disease (PD) leads to motor deficits but also depression, lack of motivation and apathy. These symptoms can be reversed by dopaminergic treatment, which may even lead to an increased hedonic tone in some patients with PD. Here, we tested the effects of dopamine on emotional processing as indexed by changes in local field potential (LFP) activity of the subthalamic nucleus (STN) in 28 PD patients undergoing deep brain stimulation. LFP activity from the STN was recorded after the administration of levodopa (ON group) or after overnight withdrawal of medication (OFF group) during presentation of an emotional picture-viewing task. Neutral and emotionally arousing pleasant and unpleasant stimuli were chosen from the International Affective Picture System. We found a double dissociation of the alpha band response depending on dopamine state and stimulus valence: dopamine enhanced the processing of pleasant stimuli, while activation during unpleasant stimuli was reduced, as indexed by the degree of desynchronization in the alpha frequency band. This pattern was reversed in the OFF state and more pronounced in the subgroup of non-depressed PD patients. Further, we found an early gamma band increase with unpleasant stimuli that occurred when ON but not OFF medication and was correlated with stimulus arousal. The late STN alpha band decrease is thought to represent active processing of sensory information. Our findings support the idea that dopamine enhances approach-related processes during late stimulus evaluation in PD. The early gamma band response may represent local encoding of increased attention, which varies as a function of stimulus arousal.
Collapse
Affiliation(s)
- Julius Huebl
- Department of Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Bernhard Spitzer
- Dahlem Institute for Neuroimaging of Emotion, Free University Berlin, Berlin, Germany
| | - Christof Brücke
- Department of Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Thomas Schönecker
- Department of Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Andreas Kupsch
- Department of Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - François Alesch
- Neurosurgical Department of the Vienna General Hospital, Vienna, Austria
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité - University Medicine Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité - University Medicine Berlin, Berlin, Germany; Berlin School of Mind and Brain, Charité - University Medicine Berlin, Berlin, Germany; NeuroCure, Charité - University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
44
|
Jahanshahi M. Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in Parkinson's disease. Front Syst Neurosci 2013; 7:118. [PMID: 24399941 PMCID: PMC3872293 DOI: 10.3389/fnsys.2013.00118] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/06/2013] [Indexed: 12/19/2022] Open
Abstract
Inhibition of inappropriate, habitual or prepotent responses is an essential component of executive control and a cornerstone of self-control. Via the hyperdirect pathway, the subthalamic nucleus (STN) receives inputs from frontal areas involved in inhibition and executive control. Evidence is reviewed from our own work and the literature suggesting that in Parkinson's disease (PD), deep brain stimulation (DBS) of the STN has an impact on executive control during attention-demanding tasks or in situations of conflict when habitual or prepotent responses have to be inhibited. These results support a role for the STN in an inter-related set of processes: switching from automatic to controlled processing, inhibitory and executive control, adjusting response thresholds and influencing speed-accuracy trade-offs. Such STN DBS-induced deficits in inhibitory and executive control may contribute to some of the psychiatric problems experienced by a proportion of operated cases after STN DBS surgery in PD. However, as no direct evidence for such a link is currently available, there is a need to provide direct evidence for such a link between STN DBS-induced deficits in inhibitory and executive control and post-surgical psychiatric complications experienced by operated patients.
Collapse
Affiliation(s)
- Marjan Jahanshahi
- Cognitive Motor Neuroscience Group and Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, The National Hospital for Neurology and Neurosurgery London, UK
| |
Collapse
|
45
|
McGonigal A, Chauvel P. Prefrontal seizures manifesting as motor stereotypies. Mov Disord 2013; 29:1181-5. [DOI: 10.1002/mds.25718] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/12/2013] [Accepted: 09/22/2013] [Indexed: 02/03/2023] Open
Affiliation(s)
- Aileen McGonigal
- Institut de Neurosciences des Systèmes; INSERM UMR 1106; Marseille France
- Aix Marseille Université; Faculté de Médecine; Marseille France
- Service de Neurophysiologie Clinique; Hôpital de la Timone; Assistance Publique des Hôpitaux de Marseille; Marseille France
| | - Patrick Chauvel
- Institut de Neurosciences des Systèmes; INSERM UMR 1106; Marseille France
- Aix Marseille Université; Faculté de Médecine; Marseille France
- Service de Neurophysiologie Clinique; Hôpital de la Timone; Assistance Publique des Hôpitaux de Marseille; Marseille France
| |
Collapse
|
46
|
Jahanshahi M. Risky choices link the subthalamic nucleus with pathological gambling in Parkinson's disease. Mov Disord 2013; 28:1617-9. [DOI: 10.1002/mds.25539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 11/10/2022] Open
Affiliation(s)
- Marjan Jahanshahi
- UCL Institute of Neurology; The National Hospital for Neurology and Neurosurgery; London United Kingdom
| |
Collapse
|