1
|
Vieira TCRG, Barros CA, Domingues R, Outeiro TF. PrP meets alpha-synuclein: Molecular mechanisms and implications for disease. J Neurochem 2024; 168:1625-1639. [PMID: 37855859 DOI: 10.1111/jnc.15992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 10/20/2023]
Abstract
The discovery of prions has challenged dogmas and has revolutionized our understanding of protein-misfolding diseases. The concept of self-propagation via protein conformational changes, originally discovered for the prion protein (PrP), also applies to other proteins that exhibit similar behavior, such as alpha-synuclein (aSyn), a central player in Parkinson's disease and in other synucleinopathies. aSyn pathology appears to spread from one cell to another during disease progression, and involves the misfolding and aggregation of aSyn. How the transfer of aSyn between cells occurs is still being studied, but one important hypothesis involves receptor-mediated transport. Interestingly, recent studies indicate that the cellular prion protein (PrPC) may play a crucial role in this process. PrPC has been shown to act as a receptor/sensor for protein aggregates in different neurodegenerative disorders, including Alzheimer's disease and amyotrophic lateral sclerosis. Here, we provide a comprehensive overview of the current state of knowledge regarding the interaction between aSyn and PrPC and discuss its role in synucleinopathies. We examine the properties of PrP and aSyn, including their structure, function, and aggregation. Additionally, we discuss the current understanding of PrPC's role as a receptor/sensor for aSyn aggregates and identify remaining unanswered questions in this area of research. Ultimately, we posit that exploring the interaction between aSyn and PrPC may offer potential treatment options for synucleinopathies.
Collapse
Affiliation(s)
- Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis and National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline A Barros
- Institute of Medical Biochemistry Leopoldo de Meis and National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Domingues
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| |
Collapse
|
2
|
Oliveira da Silva MI, Santejo M, Babcock IW, Magalhães A, Minamide LS, Won SJ, Castillo E, Gerhardt E, Fahlbusch C, Swanson RA, Outeiro TF, Taipa R, Ruff M, Bamburg JR, Liz MA. α-Synuclein triggers cofilin pathology and dendritic spine impairment via a PrP C-CCR5 dependent pathway. Cell Death Dis 2024; 15:264. [PMID: 38615035 PMCID: PMC11016063 DOI: 10.1038/s41419-024-06630-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Cognitive dysfunction and dementia are critical symptoms of Lewy Body dementias (LBD). Specifically, alpha-synuclein (αSyn) accumulation in the hippocampus leading to synaptic dysfunction is linked to cognitive deficits in LBD. Here, we investigated the pathological impact of αSyn on hippocampal neurons. We report that either αSyn overexpression or αSyn pre-formed fibrils (PFFs) treatment triggers the formation of cofilin-actin rods, synapse disruptors, in cultured hippocampal neurons and in the hippocampus of synucleinopathy mouse models and of LBD patients. In vivo, cofilin pathology is present concomitantly with synaptic impairment and cognitive dysfunction. Rods generation prompted by αSyn involves the co-action of the cellular prion protein (PrPC) and the chemokine receptor 5 (CCR5). Importantly, we show that CCR5 inhibition, with a clinically relevant peptide antagonist, reverts dendritic spine impairment promoted by αSyn. Collectively, we detail the cellular and molecular mechanism through which αSyn disrupts hippocampal synaptic structure and we identify CCR5 as a novel therapeutic target to prevent synaptic impairment and cognitive dysfunction in LBD.
Collapse
Grants
- R01 AG049668 NIA NIH HHS
- R01 NS105774 NINDS NIH HHS
- R43 AG071064 NIA NIH HHS
- S10 OD025127 NIH HHS
- Applicable Funding Source FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01-0145-FEDER-028336 (PTDC/MED-NEU/28336/2017); National Funds through FCT – Fundação para a Ciência e a Tecnologia under the project IF/00902/2015; R&D@PhD from Luso-American Development Foundation (FLAD); FLAD Healthcare 2020; and Programme for Cooperation in Science between Portugal and Germany 2018/2019 (FCT/DAAD). Márcia A Liz is supported by CEECINST/00091/2018.
- FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01-0145-FEDER-028336 (PTDC/MED-NEU/28336/2017); National Funds through FCT – Fundação para a Ciência e a Tecnologia under the project IF/00902/2015; R&D@PhD from Luso-American Development Foundation (FLAD); FLAD Healthcare 2020; and Programme for Cooperation in Science between Portugal and Germany 2018/2019 (FCT/DAAD).
- Generous gifts to the Colorado State University Development Fund (J.R.B) and by the National Institutes on Aging of the National Institutes of Health under award numbers R01AG049668, 1S10OD025127 (J.R.B), and R43AG071064 (J.R.B).
- National Institutes on Aging of the National Institutes of Health under award number RO1NS105774 (R.A.S).
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2067/1- 390729940) and SFB1286 (Project B8)
- Generous gifts to the Colorado State University Development Fund (J.R.B) and by the National Institutes on Aging of the National Institutes of Health under award numbers R01AG049668, 1S10OD025127 (J.R.B), R43AG071064 (J.R.B)
Collapse
Affiliation(s)
- Marina I Oliveira da Silva
- Neurodegeneration Team, Nerve Regeneration Group, IBMC -Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
| | - Miguel Santejo
- Neurodegeneration Team, Nerve Regeneration Group, IBMC -Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
| | - Isaac W Babcock
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ana Magalhães
- Addiction Biology Group, IBMC -Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
| | - Laurie S Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Seok-Joon Won
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Erika Castillo
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Christiane Fahlbusch
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Raymond A Swanson
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075, Göttingen, Germany
| | - Ricardo Taipa
- Neuropathology Unit, Centro Hospitalar Universitário de Santo António, 4099-001, Porto, Portugal
- Autoimmune and Neuroscience Research Group, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, 4050-600, Porto, Portugal
| | - Michael Ruff
- Creative Bio-Peptides, Rockville, MD, 20854, USA
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Márcia A Liz
- Neurodegeneration Team, Nerve Regeneration Group, IBMC -Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
3
|
Kuhn TB, Minamide LS, Tahtamouni LH, Alderfer SA, Walsh KP, Shaw AE, Yanouri O, Haigler HJ, Ruff MR, Bamburg JR. Chemokine Receptor Antagonists Prevent and Reverse Cofilin-Actin Rod Pathology and Protect Synapses in Cultured Rodent and Human iPSC-Derived Neurons. Biomedicines 2024; 12:93. [PMID: 38255199 PMCID: PMC10813319 DOI: 10.3390/biomedicines12010093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Synapse loss is the principal cause of cognitive decline in Alzheimer's disease (AD) and related disorders (ADRD). Synapse development depends on the intricate dynamics of the neuronal cytoskeleton. Cofilin, the major protein regulating actin dynamics, can be sequestered into cofilactin rods, intra-neurite bundles of cofilin-saturated actin filaments that can disrupt vesicular trafficking and cause synaptic loss. Rods are a brain pathology in human AD and mouse models of AD and ADRD. Eliminating rods is the focus of this paper. One pathway for rod formation is triggered in ~20% of rodent hippocampal neurons by disease-related factors (e.g., soluble oligomers of Amyloid-β (Aβ)) and requires cellular prion protein (PrPC), active NADPH oxidase (NOX), and cytokine/chemokine receptors (CCRs). FDA-approved antagonists of CXCR4 and CCR5 inhibit Aβ-induced rods in both rodent and human neurons with effective concentrations for 50% rod reduction (EC50) of 1-10 nM. Remarkably, two D-amino acid receptor-active peptides (RAP-103 and RAP-310) inhibit Aβ-induced rods with an EC50 of ~1 pM in mouse neurons and ~0.1 pM in human neurons. These peptides are analogs of D-Ala-Peptide T-Amide (DAPTA) and share a pentapeptide sequence (TTNYT) antagonistic to several CCR-dependent responses. RAP-103 does not inhibit neuritogenesis or outgrowth even at 1 µM, >106-fold above its EC50. N-terminal methylation, or D-Thr to D-Ser substitution, decreases the rod-inhibiting potency of RAP-103 by 103-fold, suggesting high target specificity. Neither RAP peptide inhibits neuronal rod formation induced by excitotoxic glutamate, but both inhibit rods induced in human neurons by several PrPC/NOX pathway activators (Aβ, HIV-gp120 protein, and IL-6). Significantly, RAP-103 completely protects against Aβ-induced loss of mature and developing synapses and, at 0.1 nM, reverses rods in both rodent and human neurons (T½ ~ 3 h) even in the continuous presence of Aβ. Thus, this orally available, brain-permeable peptide should be highly effective in reducing rod pathology in multifactorial neurological diseases with mixed proteinopathies acting through PrPC/NOX.
Collapse
Affiliation(s)
- Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Lubna H. Tahtamouni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan
| | - Sydney A. Alderfer
- Department of Chemical and Biological Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Keifer P. Walsh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Omar Yanouri
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA;
| | - Henry J. Haigler
- Creative Bio-Peptides, Inc., 10319 Glen Road, Suite 100, Potomac, MD 20854, USA; (H.J.H.); (M.R.R.)
| | - Michael R. Ruff
- Creative Bio-Peptides, Inc., 10319 Glen Road, Suite 100, Potomac, MD 20854, USA; (H.J.H.); (M.R.R.)
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
4
|
Lomeli-Lepe AK, Castañeda-Cabral JL, López-Pérez SJ. Synucleinopathies: Intrinsic and Extrinsic Factors. Cell Biochem Biophys 2023; 81:427-442. [PMID: 37526884 DOI: 10.1007/s12013-023-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
α-Synucleinopathies are a group of neurodegenerative disorders characterized by alterations in α-synuclein (α-syn), a protein associated with membrane phospholipids, whose precise function in normal cells is still unknown. These kinds of diseases are caused by multiple factors, but the regulation of the α-syn gene is believed to play a central role in the pathology of these disorders; therefore, the α-syn gene is one of the most studied genes. α-Synucleinopathies are complex disorders that derive from the interaction between genetic and environmental factors. Here, we offer an update on the landscape of the epigenetic regulation of α-syn gene expression that has been linked with α-synucleinopathies. We also delve into the reciprocal influence between epigenetic modifications and other factors related to these disorders, such as posttranslational modifications, microbiota participation, interactions with lipids, neuroinflammation and oxidative stress, to promote α-syn aggregation by acting on the transcription and/or translation of the α-syn gene.
Collapse
Affiliation(s)
- Alma Karen Lomeli-Lepe
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | - Jose Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | | |
Collapse
|
5
|
Wurz AI, Schulz AM, O’Bryant CT, Sharp JF, Hughes RM. Cytoskeletal dysregulation and neurodegenerative disease: Formation, monitoring, and inhibition of cofilin-actin rods. Front Cell Neurosci 2022; 16:982074. [PMID: 36212686 PMCID: PMC9535683 DOI: 10.3389/fncel.2022.982074] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
The presence of atypical cytoskeletal dynamics, structures, and associated morphologies is a common theme uniting numerous diseases and developmental disorders. In particular, cytoskeletal dysregulation is a common cellular feature of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. While the numerous activators and inhibitors of dysregulation present complexities for characterizing these elements as byproducts or initiators of the disease state, it is increasingly clear that a better understanding of these anomalies is critical for advancing the state of knowledge and plan of therapeutic attack. In this review, we focus on the hallmarks of cytoskeletal dysregulation that are associated with cofilin-linked actin regulation, with a particular emphasis on the formation, monitoring, and inhibition of cofilin-actin rods. We also review actin-associated proteins other than cofilin with links to cytoskeleton-associated neurodegenerative processes, recognizing that cofilin-actin rods comprise one strand of a vast web of interactions that occur as a result of cytoskeletal dysregulation. Our aim is to present a current perspective on cytoskeletal dysregulation, connecting recent developments in our understanding with emerging strategies for biosensing and biomimicry that will help shape future directions of the field.
Collapse
Affiliation(s)
- Anna I. Wurz
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Anna M. Schulz
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Collin T. O’Bryant
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Josephine F. Sharp
- Department of Chemistry, Notre Dame College, South Euclid, OH, United States
| | - Robert M. Hughes
- Department of Chemistry, East Carolina University, Greenville, NC, United States
- *Correspondence: Robert M. Hughes,
| |
Collapse
|
6
|
Agarwal A, Arora L, Rai SK, Avni A, Mukhopadhyay S. Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion. Nat Commun 2022; 13:1154. [PMID: 35241680 PMCID: PMC8894376 DOI: 10.1038/s41467-022-28797-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/10/2022] [Indexed: 12/30/2022] Open
Abstract
Biomolecular condensation via liquid-liquid phase separation of proteins and nucleic acids is associated with a range of critical cellular functions and neurodegenerative diseases. Here, we demonstrate that complex coacervation of the prion protein and α-synuclein within narrow stoichiometry results in the formation of highly dynamic, reversible, thermo-responsive liquid droplets via domain-specific electrostatic interactions between the positively-charged intrinsically disordered N-terminal segment of prion and the acidic C-terminal tail of α-synuclein. The addition of RNA to these coacervates yields multiphasic, vesicle-like, hollow condensates. Picosecond time-resolved measurements revealed the presence of transient electrostatic nanoclusters that are stable on the nanosecond timescale and can undergo breaking-and-making of interactions on slower timescales giving rise to a liquid-like behavior in the mesoscopic regime. The liquid-to-solid transition drives a rapid conversion of complex coacervates into heterotypic amyloids. Our results suggest that synergistic prion-α-synuclein interactions within condensates provide mechanistic underpinnings of their physiological role and overlapping neuropathological features.
Collapse
Affiliation(s)
- Aishwarya Agarwal
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Lisha Arora
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Sandeep K Rai
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Anamika Avni
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
| |
Collapse
|
7
|
Extracellular alpha-synuclein: Sensors, receptors, and responses. Neurobiol Dis 2022; 168:105696. [DOI: 10.1016/j.nbd.2022.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
|
8
|
Garrido A, Santamaría E, Fernández-Irigoyen J, Soto M, Simonet C, Fernández M, Obiang D, Tolosa E, Martí MJ, Padmanabhan S, Malagelada C, Ezquerra M, Fernández-Santiago R. Differential Phospho-Signatures in Blood Cells Identify LRRK2 G2019S Carriers in Parkinson's Disease. Mov Disord 2022; 37:1004-1015. [PMID: 35049090 PMCID: PMC9306798 DOI: 10.1002/mds.28927] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background The clinicopathological phenotype of G2019S LRRK2‐associated Parkinson's disease (L2PD) is similar to idiopathic Parkinson's disease (iPD), and G2019S LRRK2 nonmanifesting carriers (L2NMCs) are at increased risk for development of PD. With various therapeutic strategies in the clinical and preclinical pipeline, there is an urgent need to identify biomarkers that can aid early diagnosis and patient enrichment for ongoing and future LRRK2‐targeted trials. Objective The objective of this work was to investigate differential protein and phospho‐protein changes related to G2019S mutant LRRK2 in peripheral blood mononuclear cells from G2019S L2PD patients and G2019S L2NMCs, identify specific phospho‐protein changes associated with the G2019S mutation and with disease status, and compare findings with patients with iPD. Methods We performed an unbiased phospho‐proteomic study by isobaric label–based mass spectrometry using peripheral blood mononuclear cell group pools from a LRRK2 cohort from Spain encompassing patients with G2019S L2PD (n = 20), G2019S L2NMCs (n = 20), healthy control subjects (n = 30), patients with iPD (n = 15), patients with R1441G L2PD (n = 5), and R1441G L2NMCs (n = 3) (total N = 93). Results Comparing G2019S carriers with healthy controls, we identified phospho‐protein changes associated with the G2019S mutation. Moreover, we uncovered a specific G2019S phospho‐signature that changes with disease status and can discriminate patients with G2019S L2PD, G2019S L2NMCs, and healthy controls. Although patients with iPD showed a differential phospho‐proteomic profile, biological enrichment analyses revealed similar changes in deregulated pathways across the three groups. Conclusions We found a differential phospho‐signature associated with LRRK2 G2019S for which, consistent with disease status, the phospho‐profile from PD at‐risk G2019S L2NMCs was more similar to healthy controls than patients with G2019S L2PD with the manifested disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Alicia Garrido
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Enrique Santamaría
- Proteored-ISCIII, Proteomics Platform, Clinical Neuroproteomics Unit, Navarrabiomed, Departamento de Salud, UPNA, IdiSNA, Pamplona, Navarra, Spain
| | - Joaquín Fernández-Irigoyen
- Proteored-ISCIII, Proteomics Platform, Clinical Neuroproteomics Unit, Navarrabiomed, Departamento de Salud, UPNA, IdiSNA, Pamplona, Navarra, Spain
| | - Marta Soto
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Cristina Simonet
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Manel Fernández
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Parkinson's Disease and Movement Disorders Group of the Institut de Neurociències (Universitat de Barcelona), Barcelona, Catalonia, Spain
| | - Donina Obiang
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Eduardo Tolosa
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - María-José Martí
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Shalini Padmanabhan
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station, New York, New York, USA
| | - Cristina Malagelada
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Department of Biomedicine, Faculty of Medicine, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Mario Ezquerra
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Rubén Fernández-Santiago
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Histology Unit, Department of Biomedicine, Faculty of Medicine, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
9
|
Guglietti B, Sivasankar S, Mustafa S, Corrigan F, Collins-Praino LE. Fyn Kinase Activity and Its Role in Neurodegenerative Disease Pathology: a Potential Universal Target? Mol Neurobiol 2021; 58:5986-6005. [PMID: 34432266 DOI: 10.1007/s12035-021-02518-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Fyn is a non-receptor tyrosine kinase belonging to the Src family of kinases (SFKs) which has been implicated in several integral functions throughout the central nervous system (CNS), including myelination and synaptic transmission. More recently, Fyn dysfunction has been associated with pathological processes observed in neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD). Neurodegenerative diseases are amongst the leading cause of death and disability worldwide and, due to the ageing population, prevalence is predicted to rise in the coming years. Symptoms across neurodegenerative diseases are both debilitating and degenerative in nature and, concerningly, there are currently no disease-modifying therapies to prevent their progression. As such, it is important to identify potential new therapeutic targets. This review will outline the role of Fyn in normal/homeostatic processes, as well as degenerative/pathological mechanisms associated with neurodegenerative diseases, such as demyelination, pathological protein aggregation, neuroinflammation and cognitive dysfunction.
Collapse
Affiliation(s)
- Bianca Guglietti
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Srisankavi Sivasankar
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Sanam Mustafa
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia
| | - Frances Corrigan
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Lyndsey E Collins-Praino
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia. .,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
10
|
Pivotal Role of Fyn Kinase in Parkinson's Disease and Levodopa-Induced Dyskinesia: a Novel Therapeutic Target? Mol Neurobiol 2020; 58:1372-1391. [PMID: 33175322 DOI: 10.1007/s12035-020-02201-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
The exact etiology of Parkinson's disease (PD) remains obscure, although many cellular mechanisms including α-synuclein aggregation, oxidative damage, excessive neuroinflammation, and dopaminergic neuronal apoptosis are implicated in its pathogenesis. There is still no disease-modifying treatment for PD and the gold standard therapy, chronic use of levodopa is usually accompanied by severe side effects, mainly levodopa-induced dyskinesia (LID). Hence, the elucidation of the precise underlying molecular mechanisms is of paramount importance. Fyn is a tyrosine phospho-transferase of the Src family nonreceptor kinases that is highly implicated in immune regulation, cell proliferation and normal brain development. Accumulating preclinical evidence highlights the emerging role of Fyn in key aspects of PD and LID pathogenesis: it may regulate α-synuclein phosphorylation, oxidative stress-induced dopaminergic neuronal death, enhanced neuroinflammation and glutamate excitotoxicity by mediating key signaling pathways, such as BDNF/TrkB, PKCδ, MAPK, AMPK, NF-κB, Nrf2, and NMDAR axes. These findings suggest that therapeutic targeting of Fyn or Fyn-related pathways may represent a novel approach in PD treatment. Saracatinib, a nonselective Fyn inhibitor, has already been tested in clinical trials for Alzheimer's disease, and novel selective Fyn inhibitors are under investigation. In this comprehensive review, we discuss recent evidence on the role of Fyn in the pathogenesis of PD and LID and provide insights on additional Fyn-related molecular mechanisms to be explored in PD and LID pathology that could aid in the development of future Fyn-targeted therapeutic approaches.
Collapse
|
11
|
Adão-Novaes J, Valverde R, Landemberger M, Silveira M, Simões-Pires E, Lowe J, Linden R. Substrain-related dependence of Cu(I)-ATPase activity among prion protein-null mice. Brain Res 2020; 1727:146550. [DOI: 10.1016/j.brainres.2019.146550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 01/20/2023]
|
12
|
Brás IC, Xylaki M, Outeiro TF. Mechanisms of alpha-synuclein toxicity: An update and outlook. PROGRESS IN BRAIN RESEARCH 2019; 252:91-129. [PMID: 32247376 DOI: 10.1016/bs.pbr.2019.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alpha-synuclein (aSyn) was identified as the main component of inclusions that define synucleinopathies more than 20 years ago. Since then, aSyn has been extensively studied in an attempt to unravel its roles in both physiology and pathology. Today, studying the mechanisms of aSyn toxicity remains in the limelight, leading to the identification of novel pathways involved in pathogenesis. In this chapter, we address the molecular mechanisms involved in synucleinopathies, from aSyn misfolding and aggregation to the various cellular effects and pathologies associated. In particular, we review our current understanding of the mechanisms involved in the spreading of aSyn between different cells, from the periphery to the brain, and back. Finally, we also review recent studies on the contribution of inflammation and the gut microbiota to pathology in synucleinopathies. Despite significant advances in our understanding of the molecular mechanisms involved, we still lack an integrated understanding of the pathways leading to neurodegeneration in PD and other synucleinopathies, compromising our ability to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Inês Caldeira Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Mary Xylaki
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Göttingen, Germany; Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
13
|
Yazar HO, Yazar T, Cihan M. A preliminary data: Evaluation of serum Galectin-3 levels in patients with Idiopathic Parkinson's Disease. J Clin Neurosci 2019; 70:164-168. [PMID: 31471077 DOI: 10.1016/j.jocn.2019.08.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
AIM In our study, we aimed to collect data for the hypothesis that Galectin-3 might be used as a new prognostic and therapeutic biomarker in Idiopathic Parkinson's Disease (IPD). METHOD In this prospective and cross-sectional study, the Unified Parkinson's Disease Rating Scale (UPDRS) and Modified Hoehn and Yahr (H&Y) scales were applied to each patient diagnosed as IPD according to the UK Brain Bank diagnostic criteria. The control group consisted of healthy individuals with the same age, gender, and body mass index characteristics as the patients meeting the exclusion criteria. RESULTS A total of 111 cases were included in the study, 48 were IPD, and 63 were healthy controls. There were no statistically significant differences between the IPD and control groups in terms of demographic, anthropometric, and blood parameters (p > 0.05). Serum galectin-3 levels were significantly higher in IPD than the control group (p < 0.001). Serum galectin-3 levels, UPDRS scores, and duration of disease were significantly higher in patients with IPD in parallel with the progression of the disease (p < 0.001; 0.001; 0.009). No significant relationship was detected between the stage of the disease and other parameters (p < 0.05). CONCLUSION Our study supports the hypothesis that serum galectin-3 level might be associated with IPD. Our data suggest that serum galectin-3 levels might be an accessible biomarker for the detection and prevention of chronic, progressive diseases such as IPH.
Collapse
Affiliation(s)
- Hülya Olgun Yazar
- Ordu University Training and Research Hospital, Clinic of Neurology, Turkey.
| | - Tamer Yazar
- Ordu State Hospital, Clinic of Neurology, Turkey
| | - Murat Cihan
- Ordu University Training and Research Hospital, Clinical Biochemist, Turkey
| |
Collapse
|
14
|
Ma J, Gao J, Wang J, Xie A. Prion-Like Mechanisms in Parkinson's Disease. Front Neurosci 2019; 13:552. [PMID: 31275093 PMCID: PMC6591488 DOI: 10.3389/fnins.2019.00552] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Formation and aggregation of misfolded proteins in the central nervous system (CNS) is a key hallmark of several age-related neurodegenerative diseases, including Parkinson’s disease (PD), Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS). These diseases share key biophysical and biochemical characteristics with prion diseases. It is believed that PD is characterized by abnormal protein aggregation, mainly that of α-synuclein (α-syn). Of particular importance, there is growing evidence indicating that abnormal α-syn can spread to neighboring brain regions and cause aggregation of endogenous α-syn in these regions as seeds, in a “prion-like” manner. Abundant studies in vitro and in vivo have shown that α-syn goes through a templated conformational change, propagates from the original region to neighboring regions, and eventually cause neuron degeneration in the substantia nigra and striatum. The objective of this review is to summarize the mechanisms involved in the aggregation of abnormal intracellular α-syn and its subsequent cell-to-cell transmission. According to these findings, we look forward to effective therapeutic perspectives that can block the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiangnan Ma
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Gao
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
15
|
|
16
|
Cell Responses to Extracellular α-Synuclein. Molecules 2019; 24:molecules24020305. [PMID: 30650656 PMCID: PMC6359176 DOI: 10.3390/molecules24020305] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
Synucleins are small naturally unfolded proteins involved in neurodegenerative diseases and cancer. The family contains three members: α-, β-, and -synuclein. α-Synuclein is the most thoroughly investigated because of its close association with Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy. Until recently, the synuclein's research was mainly focused on their intracellular forms. However, new studies highlighted the important role of extracellular synucleins. Extracellular forms of synucleins propagate between various types of cells, bind to cell surface receptors and transmit signals, regulating numerous intracellular processes. Here we give an update of the latest results about the mechanisms of action of extracellular synucleins, their binding to cell surface receptors, effect on biochemical pathways and the role in neurodegeneration and neuroinflammation.
Collapse
|