1
|
Ishibashi H, Kobayashi K, Yamanaka H, Tojima M, Oi K, Neshige S, Hitomi T, Matsuhashi M, Maruyama H, Takahashi R, Ikeda A. Redefined giant somatosensory evoked potentials: Evoked epileptic complexes of excitatory and inhibitory components. Clin Neurophysiol 2024; 164:119-129. [PMID: 38865779 DOI: 10.1016/j.clinph.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/28/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVE Giant somatosensory evoked potentials (SEPs) are observed in patients with cortical myoclonus. Short-latency components (SLC), are regarded as evoked epileptic activities or paroxysmal depolarization shifts (PDSs). This study aimed to reveal the electrophysiological significance of the middle-latency component (MLC) P50 of the SEPs. METHODS Twenty-two patients with cortical myoclonus having giant SEPs (patient group) and 15 healthy controls were included in this study. Waveform changes in SEPs before and after perampanel (PER) treatment were evaluated in the patient group. The wide range, time-frequency properties underlying the waveforms were compared between the groups. RESULTS After PER treatment, SLC was prolonged and positively correlated with PER concentration, whereas MLC showed no correlation with PER concentration. Time-frequency analysis showed a power increase (156 Hz in all patients, 624 Hz in benign adult familial myoclonus epilepsy patients) underlying SLC and a power decrease (156 Hz, 624 Hz) underlying MLC in the patient group. CONCLUSIONS The high-frequency power increase in SLCs and decrease in MLCs clearly reflected PDS and subsequent hyperpolarization, respectively. This relationship was similar to that of interictal epileptiform discharges, suggesting that giant SEPs evoke epileptic complexes of excitatory and inhibitory components. SIGNIFICANCE MLCs of giant SEPs reflected inhibitory components.
Collapse
Affiliation(s)
- Haruka Ishibashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan; Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Haruo Yamanaka
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Maya Tojima
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Kazuki Oi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Shuichiro Neshige
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Japan
| | - Takefumi Hitomi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Japan.
| |
Collapse
|
2
|
Latorre A, Belvisi D, Rothwell JC, Bhatia KP, Rocchi L. Rethinking the neurophysiological concept of cortical myoclonus. Clin Neurophysiol 2023; 156:125-139. [PMID: 37948946 DOI: 10.1016/j.clinph.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/04/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Cortical myoclonus is thought to result from abnormal electrical discharges arising in the sensorimotor cortex. Given the ease of recording of cortical discharges, electrophysiological features of cortical myoclonus have been better characterized than those of subcortical forms, and electrophysiological criteria for cortical myoclonus have been proposed. These include the presence of giant somatosensory evoked potentials, enhanced long-latency reflexes, electroencephalographic discharges time-locked to individual myoclonic jerks and significant cortico-muscular connectivity. Other features that are assumed to support the cortical origin of myoclonus are short-duration electromyographic bursts, the presence of both positive and negative myoclonus and cranial-caudal progression of the jerks. While these criteria are widely used in clinical practice and research settings, their application can be difficult in practice and, as a result, they are fulfilled only by a minority of patients. In this review we reappraise the evidence that led to the definition of the electrophysiological criteria of cortical myoclonus, highlighting possible methodological incongruencies and misconceptions. We believe that, at present, the diagnostic accuracy of cortical myoclonus can be increased only by combining observations from multiple tests, according to their pathophysiological rationale; nevertheless, larger studies are needed to standardise the methods, to resolve methodological issues, to establish the diagnostic criteria sensitivity and specificity and to develop further methods that might be useful to clarify the pathophysiology of myoclonus.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom.
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Franceschetti S, Visani E, Panzica F, Coppola A, Striano P, Canafoglia L. Cortico-muscular coherence and brain networks in familial adult myoclonic epilepsy and progressive myoclonic epilepsy. Clin Neurophysiol 2023; 151:74-82. [PMID: 37216715 DOI: 10.1016/j.clinph.2023.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/12/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE Familial Adult Myoclonic Epilepsy (FAME) presents with action-activated myoclonus, often associated with epilepsy, sharing various features with Progressive Myoclonic Epilepsy (PMEs), but with slower course and limited motor disability. We aimed our study to identify measures suitable to explain the different severity of FAME2 compared to EPM1, the most common PME, and to detect the signature of the distinctive brain networks. METHODS We analyzed the EEG-EMG coherence (CMC) during segmental motor activity and indexes of connectivity in the two patient groups, and in healthy subjects (HS). We also investigated the regional and global properties of the network. RESULTS In FAME2, differently from EPM1, we found a well-localized distribution of beta-CMC and increased betweenness-centrality (BC) on the sensorimotor region contralateral to the activated hand. In both patient groups, compared to HS, there was a decline in the network connectivity indexes in the beta and gamma band, which was more obvious in FAME2. CONCLUSIONS In FAME2, better localized CMC and increased BC in comparison with EPM1 patients could counteract the severity and the spreading of the myoclonus. Decreased indexes of cortical integration were more severe in FAME2. SIGNIFICANCE Our measures correlated with different motor disabilities and identified distinctive brain network impairments.
Collapse
Affiliation(s)
- Silvana Franceschetti
- Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Elisa Visani
- Bioengineering Unit, Dept. of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Ferruccio Panzica
- Clinical Engineering, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Antonietta Coppola
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II, University of Naples, Napoli, Italy
| | - Pasquale Striano
- IRCCS Istituto "Giannina Gaslini", Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Dept of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
4
|
Cuccurullo C, Striano P, Coppola A. Familial Adult Myoclonus Epilepsy: A Non-Coding Repeat Expansion Disorder of Cerebellar-Thalamic-Cortical Loop. Cells 2023; 12:1617. [PMID: 37371086 DOI: 10.3390/cells12121617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Familial adult myoclonus Epilepsy (FAME) is a non-coding repeat expansion disorder that has been reported under different acronyms and initially linked to four main loci: FAME1 (8q23.3-q24.1), FAME 2 (2p11.1-q12.1), FAME3 (5p15.31-p15.1), and FAME4 (3q26.32-3q28). To date, it is known that the genetic mechanism underlying FAME consists of the expansion of similar non-coding pentanucleotide repeats, TTTCA and TTTTA, in different genes. FAME is characterized by cortical tremor and myoclonus usually manifesting within the second decade of life, and infrequent seizures by the third or fourth decade. Cortical tremor is the core feature of FAME and is considered part of a spectrum of cortical myoclonus. Neurophysiological investigations as jerk-locked back averaging (JLBA) and corticomuscular coherence analysis, giant somatosensory evoked potentials (SEPs), and the presence of long-latency reflex I (or C reflex) at rest support cortical tremor as the result of the sensorimotor cortex hyperexcitability. Furthermore, the application of transcranial magnetic stimulation (TMS) protocols in FAME patients has recently shown that inhibitory circuits are also altered within the primary somatosensory cortex and the concomitant involvement of subcortical networks. Moreover, neuroimaging studies and postmortem autoptic studies indicate cerebellar alterations and abnormal functional connectivity between the cerebellum and cerebrum in FAME. Accordingly, the pathophysiological mechanism underlying FAME has been hypothesized to reside in decreased sensorimotor cortical inhibition through dysfunction of the cerebellar-thalamic-cortical loop, secondary to primary cerebellar pathology. In this context, the non-coding pentameric expansions have been proposed to cause cerebellar damage through an RNA-mediated toxicity mechanism. The elucidation of the underlying pathological mechanisms of FAME paves the way to novel therapeutic possibilities, such as RNA-targeting treatments, possibly applicable to other neurodegenerative non-coding disorders.
Collapse
Affiliation(s)
- Claudia Cuccurullo
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, 80131 Naples, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, 16126 Genova, Italy
| | - Antonietta Coppola
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, 80131 Naples, Italy
| |
Collapse
|
5
|
Dubbioso R, Suppa A, Tijssen MAJ, Ikeda A. Familial adult myoclonus epilepsy: Neurophysiological investigations. Epilepsia 2023. [PMID: 36806000 DOI: 10.1111/epi.17553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/20/2023]
Abstract
Familial adult myoclonus epilepsy (FAME) also described as benign adult familial myoclonus epilepsy (BAFME) is a high-penetrant autosomal dominant condition featuring cortical myoclonus of varying frequency and occasional/rare convulsive seizures. In this update we provide a detailed overview of the main neurophysiological findings so far reported in patients with FAME/BAFME. After reviewing the diagnostic contribution of each neurophysiological technique, we discuss the possible mechanisms underlying cortical hyperexcitability and suggest the involvement of more complex circuits engaging cortical and subcortical structures, such as the cerebellum. We, thus, propose that FAME/BAFME clinical features should arise from an "abnormal neuronal network activity," where the cerebellum represents a possible common denominator. In the last part of the article, we suggest that future neurophysiological studies using more advanced transcranial magnetic stimulation (TMS) protocols could be used to evaluate the functional connectivity between the cerebellum and cortical structures. Finally, non-invasive brain stimulation techniques such as repetitive TMS or transcranial direct current stimulation could be assessed as potential therapeutic tools to ameliorate cortical excitability.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Napoli, Italy
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Marina A J Tijssen
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands.,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology Kyoto University Graduate School of Medicine Shogoin, Kyoto, Japan
| |
Collapse
|
6
|
Dubbioso R, Striano P, Tomasevic L, Bilo L, Esposito M, Manganelli F, Coppola A. OUP accepted manuscript. Brain Commun 2022; 4:fcac037. [PMID: 35233526 PMCID: PMC8882005 DOI: 10.1093/braincomms/fcac037] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/26/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Familial adult myoclonic epilepsy type 2 is a hereditary condition characterized by cortical tremor, myoclonus and epilepsy. It belongs to the spectrum of cortical myoclonus and the sensorimotor cortex hyperexcitability represents an important pathogenic mechanism underlying this condition. Besides pericentral cortical structures, the impairment of subcortical networks seems also to play a pathogenetic role, mainly via the thalamo-cortical pathway. However, the mechanisms underlying cortical–subcortical circuits dysfunction, as well as their impact on clinical manifestations, are still unknown. Therefore, the main aims of our study were to systematically study with an extensive electrophysiological battery, the cortical sensorimotor, as well as thalamo-cortical networks in genetically confirmed familial adult myoclonic epilepsy patients and to establish reliable neurophysiological biomarkers for the diagnosis. In 26 familial myoclonic epilepsy subjects, harbouring the intronic ATTTC repeat expansion in the StAR-related lipid transfer domain-containing 7 gene, 17 juvenile myoclonic epilepsy patients and 22 healthy controls, we evaluated the facilitatory and inhibitory circuits within the primary motor cortex using single and paired-pulse transcranial magnetic stimulation paradigms. We also probed the excitability of the somatosensory, as well as the thalamo-somatosensory cortex connection by using ad hoc somatosensory evoked potential protocols. The sensitivity and specificity of transcranial magnetic stimulation and somatosensory evoked potential metrics were derived from receiver operating curve analysis. Familial adult myoclonic epilepsy patients displayed increased facilitation and decreased inhibition within the sensorimotor cortex compared with juvenile myoclonic epilepsy patients (all P < 0.05) and healthy controls (all P < 0.05). Somatosensory evoked potential protocols also displayed a significant reduction of early high-frequency oscillations and less inhibition at paired-pulse protocol, suggesting a concomitant failure of thalamo-somatosensory cortex circuits. Disease onset and duration and myoclonus severity did not correlate either with sensorimotor hyperexcitability or thalamo-cortical measures (all P > 0.05). Patients with a longer disease duration had more severe myoclonus (r = 0.467, P = 0.02) associated with a lower frequency (r = −0.607, P = 0.001) and higher power of tremor (r = 0.479, P = 0.02). Finally, familial adult myoclonic epilepsy was reliably diagnosed using transcranial magnetic stimulation, demonstrating its superiority as a diagnostic factor compared to somatosensory evoked potential measures. In conclusion, deficits of sensorimotor cortical and thalamo-cortical circuits are involved in the pathophysiology of familial adult myoclonic epilepsy even if these alterations are not associated with clinical severity. Transcranial magnetic stimulation-based measurements display an overall higher accuracy than somatosensory evoked potential parameters to reliably distinguish familial adult myoclonic epilepsy from juvenile myoclonic epilepsy and healthy controls.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
- Correspondence may also be addressed to: Dubbioso Raffaele MD PhD Department of Neurosciences Reproductive Sciences and Odontostomatology University Federico II of Napoli Via Sergio Pansini, 5. 80131 Napoli, Italy E-mail:
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Correspondence to: Striano Pasquale, MD, PhD Department of Neurosciences Rehabilitation, Ophthalmology, Genetics Maternal and Child Health (DiNOGMI) University of Genoa, Via Gaslini 5 padiglione 16, I piano, 16148 Genova, Italy E-mail: ;
| | - Leo Tomasevic
- Danish Research Centre for Magnetic Resonance (DRCMR), Copenhagen University, Kobenhavn, Denmark
| | - Leonilda Bilo
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
| | | | - Fiore Manganelli
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
| | - Antonietta Coppola
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
| |
Collapse
|
7
|
Matsubara T, Ahlfors SP, Mima T, Hagiwara K, Shigeto H, Tobimatsu S, Goto Y, Stufflebeam S. Bilateral Representation of Sensorimotor Responses in Benign Adult Familial Myoclonus Epilepsy: An MEG Study. Front Neurol 2021; 12:759866. [PMID: 34764933 PMCID: PMC8577121 DOI: 10.3389/fneur.2021.759866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/21/2021] [Indexed: 12/03/2022] Open
Abstract
Patients with cortical reflex myoclonus manifest typical neurophysiologic characteristics due to primary sensorimotor cortex (S1/M1) hyperexcitability, namely, contralateral giant somatosensory-evoked potentials/fields and a C-reflex (CR) in the stimulated arm. Some patients show a CR in both arms in response to unilateral stimulation, with about 10-ms delay in the non-stimulated compared with the stimulated arm. This bilateral C-reflex (BCR) may reflect strong involvement of bilateral S1/M1. However, the significance and exact pathophysiology of BCR within 50 ms are yet to be established because it is difficult to identify a true ipsilateral response in the presence of the giant component in the contralateral hemisphere. We hypothesized that in patients with BCR, bilateral S1/M1 activity will be detected using MEG source localization and interhemispheric connectivity will be stronger than in healthy controls (HCs) between S1/M1 cortices. We recruited five patients with cortical reflex myoclonus with BCR and 15 HCs. All patients had benign adult familial myoclonus epilepsy. The median nerve was electrically stimulated unilaterally. Ipsilateral activity was investigated in functional regions of interest that were determined by the N20m response to contralateral stimulation. Functional connectivity was investigated using weighted phase-lag index (wPLI) in the time-frequency window of 30–50 ms and 30–100 Hz. Among seven of the 10 arms of the patients who showed BCR, the average onset-to-onset delay between the stimulated and the non-stimulated arm was 8.4 ms. Ipsilateral S1/M1 activity was prominent in patients. The average time difference between bilateral cortical activities was 9.4 ms. The average wPLI was significantly higher in the patients compared with HCs in specific cortico-cortical connections. These connections included precentral-precentral, postcentral-precentral, inferior parietal (IP)-precentral, and IP-postcentral cortices interhemispherically (contralateral region-ipsilateral region), and precentral-IP and postcentral-IP intrahemispherically (contralateral region-contralateral region). The ipsilateral response in patients with BCR may be a pathologically enhanced motor response homologous to the giant component, which was too weak to be reliably detected in HCs. Bilateral representation of sensorimotor responses is associated with disinhibition of the transcallosal inhibitory pathway within homologous motor cortices, which is mediated by the IP. IP may play a role in suppressing the inappropriate movements seen in cortical myoclonus.
Collapse
Affiliation(s)
- Teppei Matsubara
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.,International University of Health and Welfare, Otawara, Japan
| | - Seppo P Ahlfors
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Tatsuya Mima
- Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan
| | - Koichi Hagiwara
- Epilepsy and Sleep Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Hiroshi Shigeto
- Division of Medical Technology, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shozo Tobimatsu
- Department of Orthoptics, Faculty of Medicine, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Yoshinobu Goto
- Department of Physiology, School of Medicine, International University of Health and Welfare, Okawa, Japan
| | - Steven Stufflebeam
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|