1
|
Sintini I, Ali F, Stephens Y, Clark HM, Stierwalt JA, Machulda MM, Satoh R, Josephs KA, Whitwell JL. Functional connectivity abnormalities in clinical variants of progressive supranuclear palsy. Neuroimage Clin 2024; 45:103727. [PMID: 39719808 PMCID: PMC11728076 DOI: 10.1016/j.nicl.2024.103727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/07/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
Progressive supranuclear palsy (PSP) can present with different clinical variants which show distinct, but partially overlapping, patterns of neurodegeneration and tau deposition in a network of regions including cerebellar dentate, superior cerebellar peduncle, midbrain, thalamus, basal ganglia, and frontal lobe. We sought to determine whether disruptions in functional connectivity within this PSP network measured using resting-state functional MRI (rs-fMRI) differed between PSP-Richardson's syndrome (PSP-RS) and the cortical and subcortical clinical variants of PSP. Structural MRI and rs-fMRI scans were collected for 36 PSP-RS, 25 PSP-cortical and 34 PSP-subcortical participants who met the Movement Disorder Society PSP clinical criteria. Ninety participants underwent flortaucipir-PET scans. MRIs were processed using CONN Toolbox. Functional connectivity between regions of the PSP network was compared between each PSP group and 83 healthy controls, and between the PSP groups, covarying for age. The effect of flortaucipir uptake and clinical scores on connectivity was assessed. Connectivity was reduced in PSP-RS compared to controls throughout the network, involving cerebellar dentate, midbrain, basal ganglia, thalamus, and frontal regions. Frontal regions showed reduced connectivity to other regions in the network in PSP-cortical, particularly the thalamus, caudate and substantia nigra. Disruptions in connectivity in PSP-subcortical were less pronounced, with the strongest disruption between the pallidum and striatum. There was moderate evidence that elevated subcortical flortaucipir uptake correlated with both increased and reduced connectivity between regions of the PSP network. Lower connectivity within the PSP network correlated with worse performance on clinical tests, including PSP rating scale. Patterns of disrupted functional connectivity revealed both variant-specific and shared disease pathways within the PSP network among PSP clinical variants, providing insight into disease heterogeneity.
Collapse
Affiliation(s)
- Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Ryota Satoh
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
2
|
Quattrone A, Zappia M, Quattrone A. Simple biomarkers to distinguish Parkinson's disease from its mimics in clinical practice: a comprehensive review and future directions. Front Neurol 2024; 15:1460576. [PMID: 39364423 PMCID: PMC11446779 DOI: 10.3389/fneur.2024.1460576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
In the last few years, a plethora of biomarkers have been proposed for the differentiation of Parkinson's disease (PD) from its mimics. Most of them consist of complex measures, often based on expensive technology, not easily employed outside research centers. MRI measures have been widely used to differentiate between PD and other parkinsonism. However, these measurements were often performed manually on small brain areas in small patient cohorts with intra- and inter-rater variability. The aim of the current review is to provide a comprehensive and updated overview of the literature on biomarkers commonly used to differentiate PD from its mimics (including parkinsonism and tremor syndromes), focusing on parameters derived by simple qualitative or quantitative measurements that can be used in routine practice. Several electrophysiological, sonographic and MRI biomarkers have shown promising results, including the blink-reflex recovery cycle, tremor analysis, sonographic or MRI assessment of substantia nigra, and several qualitative MRI signs or simple linear measures to be directly performed on MR images. The most significant issue is that most studies have been conducted on small patient cohorts from a single center, with limited reproducibility of the findings. Future studies should be carried out on larger international cohorts of patients to ensure generalizability. Moreover, research on simple biomarkers should seek measurements to differentiate patients with different diseases but similar clinical phenotypes, distinguish subtypes of the same disease, assess disease progression, and correlate biomarkers with pathological data. An even more important goal would be to predict the disease in the preclinical phase.
Collapse
Affiliation(s)
- Andrea Quattrone
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Mario Zappia
- Department of Medical, Surgical Sciences and Advanced Technologies, GF Ingrassia, University of Catania, Catania, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
3
|
Buchert R, Huppertz HJ, Wegner F, Berding G, Brendel M, Apostolova I, Buhmann C, Poetter-Nerger M, Dierks A, Katzdobler S, Klietz M, Levin J, Mahmoudi N, Rinscheid A, Quattrone A, Rogozinski S, Rumpf JJ, Schneider C, Stoecklein S, Spetsieris PG, Eidelberg D, Sabri O, Barthel H, Wattjes MP, Höglinger G. Added value of FDG-PET for detection of progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 2024; 96:jnnp-2024-333590. [PMID: 39107038 PMCID: PMC12015049 DOI: 10.1136/jnnp-2024-333590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Diagnostic criteria for progressive supranuclear palsy (PSP) include midbrain atrophy in MRI and hypometabolism in [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) as supportive features. Due to limited data regarding their relative and sequential value, there is no recommendation for an algorithm to combine both modalities to increase diagnostic accuracy. This study evaluated the added value of sequential imaging using state-of-the-art methods to analyse the images regarding PSP features. METHODS The retrospective study included 41 PSP patients, 21 with Richardson's syndrome (PSP-RS), 20 with variant PSP phenotypes (vPSP) and 46 sex- and age-matched healthy controls. A pretrained support vector machine (SVM) for the classification of atrophy profiles from automatic MRI volumetry was used to analyse T1w-MRI (output: MRI-SVM-PSP score). Covariance pattern analysis was applied to compute the expression of a predefined PSP-related pattern in FDG-PET (output: PET-PSPRP expression score). RESULTS The area under the receiver operating characteristic curve for the detection of PSP did not differ between MRI-SVM-PSP and PET-PSPRP expression score (p≥0.63): about 0.90, 0.95 and 0.85 for detection of all PSP, PSP-RS and vPSP. The MRI-SVM-PSP score achieved about 13% higher specificity and about 15% lower sensitivity than the PET-PSPRP expression score. Decision tree models selected the MRI-SVM-PSP score for the first branching and the PET-PSPRP expression score for a second split of the subgroup with normal MRI-SVM-PSP score, both in the whole sample and when restricted to PSP-RS or vPSP. CONCLUSIONS FDG-PET provides added value for PSP-suspected patients with normal/inconclusive T1w-MRI, regardless of PSP phenotype and the methods to analyse the images for PSP-typical features.
Collapse
Affiliation(s)
- Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Georg Berding
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ivayla Apostolova
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Eppendorf, Hamburg, Germany
| | | | - Alexander Dierks
- Department of Nuclear Medicine, University Hospital Augsburg, Augsburg, Germany
| | - Sabrina Katzdobler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Martin Klietz
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Nima Mahmoudi
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Andreas Rinscheid
- Medical Physics and Radiation Protection, University Hospital Augsburg, Augsburg, Germany
| | - Andrea Quattrone
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | | | - Christine Schneider
- Department of Neurology and Clinical Neurophysiology, University Hospital Augsburg, Augsburg, Germany
| | - Sophia Stoecklein
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Phoebe G Spetsieris
- Feinstein Institutes for Medical Research Manhasset, Manhasset, New York, USA
| | - David Eidelberg
- Feinstein Institutes for Medical Research Manhasset, Manhasset, New York, USA
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Mike P Wattjes
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Günter Höglinger
- Department of Neurology, Hannover Medical School, Hannover, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Ali F, Clark H, Machulda M, Senjem ML, Lowe VJ, Jack CR, Josephs KA, Whitwell J, Botha H. Patterns of brain volume and metabolism predict clinical features in the progressive supranuclear palsy spectrum. Brain Commun 2024; 6:fcae233. [PMID: 39056025 PMCID: PMC11272075 DOI: 10.1093/braincomms/fcae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 03/26/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative tauopathy that presents with highly heterogenous clinical syndromes. We perform cross-sectional data-driven discovery of independent patterns of brain atrophy and hypometabolism across the entire PSP spectrum. We then use these patterns to predict specific clinical features and to assess their relationship to phenotypic heterogeneity. We included 111 patients with PSP (60 with Richardson syndrome and 51 with cortical and subcortical variant subtypes). Ninety-one were used as the training set and 20 as a test set. The presence and severity of granular clinical variables such as postural instability, parkinsonism, apraxia and supranuclear gaze palsy were noted. Domains of akinesia, ocular motor impairment, postural instability and cognitive dysfunction as defined by the Movement Disorders Society criteria for PSP were also recorded. Non-negative matrix factorization was used on cross-sectional MRI and fluorodeoxyglucose-positron emission tomography (FDG-PET) scans. Independent models for each as well as a combined model for MRI and FDG-PET were developed and used to predict the granular clinical variables. Both MRI and FDG-PET were better at predicting presence of a symptom than severity, suggesting identification of disease state may be more robust than disease stage. FDG-PET predicted predominantly cortical abnormalities better than MRI such as ideomotor apraxia, apraxia of speech and frontal dysexecutive syndrome. MRI demonstrated prediction of cortical and more so sub-cortical abnormalities, such as parkinsonism. Distinct neuroanatomical foci were predictive in MRI- and FDG-PET-based models. For example, vertical gaze palsy was predicted by midbrain atrophy on MRI, but frontal eye field hypometabolism on FDG-PET. Findings also differed by scale or instrument used. For example, prediction of ocular motor abnormalities using the PSP Saccadic Impairment Scale was stronger than with the Movement Disorders Society Diagnostic criteria for PSP oculomotor impairment designation. Combination of MRI and FDG-PET demonstrated enhanced detection of parkinsonism and frontal syndrome presence and apraxia, cognitive impairment and bradykinesia severity. Both MRI and FDG-PET patterns were able to predict some measures in the test set; however, prediction of global cognition measured by Montreal Cognitive Assessment was the strongest. MRI predictions generalized more robustly to the test set. PSP leads to neurodegeneration in motor, cognitive and ocular motor networks at cortical and subcortical foci, leading to diverse yet overlapping clinical syndromes. To advance understanding of phenotypic heterogeneity in PSP, it is essential to consider data-driven approaches to clinical neuroimaging analyses.
Collapse
Affiliation(s)
- Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Heather Clark
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Strobel J, Müller HP, Ludolph AC, Beer AJ, Sollmann N, Kassubek J. New Perspectives in Radiological and Radiopharmaceutical Hybrid Imaging in Progressive Supranuclear Palsy: A Systematic Review. Cells 2023; 12:2776. [PMID: 38132096 PMCID: PMC10742083 DOI: 10.3390/cells12242776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by four-repeat tau deposition in various cell types and anatomical regions, and can manifest as several clinical phenotypes, including the most common phenotype, Richardson's syndrome. The limited availability of biomarkers for PSP relates to the overlap of clinical features with other neurodegenerative disorders, but identification of a growing number of biomarkers from imaging is underway. One way to increase the reliability of imaging biomarkers is to combine different modalities for multimodal imaging. This review aimed to provide an overview of the current state of PSP hybrid imaging by combinations of positron emission tomography (PET) and magnetic resonance imaging (MRI). Specifically, combined PET and MRI studies in PSP highlight the potential of [18F]AV-1451 to detect tau, but also the challenge in differentiating PSP from other neurodegenerative diseases. Studies over the last years showed a reduced synaptic density in [11C]UCB-J PET, linked [11C]PK11195 and [18F]AV-1451 markers to disease progression, and suggested the potential role of [18F]RO948 PET for identifying tau pathology in subcortical regions. The integration of quantitative global and regional gray matter analysis by MRI may further guide the assessment of reduced cortical thickness or volume alterations, and diffusion MRI could provide insight into microstructural changes and structural connectivity in PSP. Challenges in radiopharmaceutical biomarkers and hybrid imaging require further research targeting markers for comprehensive PSP diagnosis.
Collapse
Affiliation(s)
- Joachim Strobel
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany;
| | - Hans-Peter Müller
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
| | - Albert C. Ludolph
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
- German Center for Neurodegenerative Diseases (DZNE), Ulm University, 89081 Ulm, Germany
| | - Ambros J. Beer
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany;
| | - Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jan Kassubek
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
- German Center for Neurodegenerative Diseases (DZNE), Ulm University, 89081 Ulm, Germany
| |
Collapse
|