1
|
Darras BT, Volpe JJ. Muscle Involvement and Restricted Disorders. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:1074-1121.e18. [DOI: 10.1016/b978-0-443-10513-5.00037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Garg A, Jansen S, Greenberg L, Zhang R, Lavine KJ, Greenberg MJ. Dilated cardiomyopathy-associated skeletal muscle actin (ACTA1) mutation R256H disrupts actin structure and function and causes cardiomyocyte hypocontractility. Proc Natl Acad Sci U S A 2024; 121:e2405020121. [PMID: 39503885 PMCID: PMC11572969 DOI: 10.1073/pnas.2405020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/17/2024] [Indexed: 11/13/2024] Open
Abstract
Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 variant, R256H. We previously identified this variant in a family with dilated cardiomyopathy, who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using cryoelectron microscopy, and we see alterations in actin's structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that ACTA1R256H/+ human-induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric organization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.
Collapse
Affiliation(s)
- Ankit Garg
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO63110
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
3
|
Garg A, Jansen S, Zhang R, Lavine KJ, Greenberg MJ. Dilated cardiomyopathy-associated skeletal muscle actin (ACTA1) mutation R256H disrupts actin structure and function and causes cardiomyocyte hypocontractility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.583979. [PMID: 38559046 PMCID: PMC10979883 DOI: 10.1101/2024.03.10.583979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 mutation, R256H. We previously identified this mutation in multiple family members with dilated cardiomyopathy (DCM), who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent functional effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using Cryo-EM, and we see alterations in actin's structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that ACTA1R256H/+ human induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric disorganization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.
Collapse
Affiliation(s)
- Ankit Garg
- Division of Cardiology, Department of Medicine Johns Hopkins University Baltimore MD USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Chong JX, Childers MC, Marvin CT, Marcello AJ, Gonorazky H, Hazrati LN, Dowling JJ, Al Amrani F, Alanay Y, Nieto Y, Gabriel MÁM, Aylsworth AS, Buckingham KJ, Shively KM, Sommers O, Anderson K, Regnier M, Bamshad MJ. Variants in ACTC1 underlie distal arthrogryposis accompanied by congenital heart defects. HGG ADVANCES 2023; 4:100213. [PMID: 37457373 PMCID: PMC10345160 DOI: 10.1016/j.xhgg.2023.100213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Contraction of the human sarcomere is the result of interactions between myosin cross-bridges and actin filaments. Pathogenic variants in genes such as MYH7, TPM1, and TNNI3 that encode parts of the cardiac sarcomere cause muscle diseases that affect the heart, such as dilated cardiomyopathy and hypertrophic cardiomyopathy. In contrast, pathogenic variants in homologous genes such as MYH2, TPM2, and TNNI2 that encode parts of the skeletal muscle sarcomere cause muscle diseases affecting skeletal muscle, such as distal arthrogryposis (DA) syndromes and skeletal myopathies. To date, there have been few reports of genes (e.g., MYH7) encoding sarcomeric proteins in which the same pathogenic variant affects skeletal and cardiac muscle. Moreover, none of the known genes underlying DA have been found to contain pathogenic variants that also cause cardiac abnormalities. We report five families with DA because of heterozygous missense variants in the gene actin, alpha, cardiac muscle 1 (ACTC1). ACTC1 encodes a highly conserved actin that binds to myosin in cardiac and skeletal muscle. Pathogenic variants in ACTC1 have been found previously to underlie atrial septal defect, dilated cardiomyopathy, hypertrophic cardiomyopathy, and left ventricular noncompaction. Our discovery delineates a new DA condition because of variants in ACTC1 and suggests that some functions of ACTC1 are shared in cardiac and skeletal muscle.
Collapse
Affiliation(s)
- Jessica X. Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute, Seattle, WA 98195, USA
| | - Matthew Carter Childers
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
| | - Colby T. Marvin
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Anthony J. Marcello
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Hernan Gonorazky
- Division of Neurology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Lili-Naz Hazrati
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - James J. Dowling
- Division of Neurology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Departments of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Fatema Al Amrani
- Division of Neurology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Division of Neurology, Department of Pediatrics, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Yasemin Alanay
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Yolanda Nieto
- Department of Basic Bio-Medical Sciences, European University of Madrid, Madrid, Spain
| | - Miguel Á Marín Gabriel
- Department of Pediatrics, Puerta de Hierro-Majadahonda University Hospital, 28221 Madrid, Spain
| | - Arthur S. Aylsworth
- Departments of Pediatrics and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kati J. Buckingham
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Kathryn M. Shively
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Olivia Sommers
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Kailyn Anderson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - University of Washington Center for Mendelian Genomics
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
- Division of Neurology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Departments of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
- Division of Neurology, Department of Pediatrics, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Sultanate of Oman
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
- Department of Basic Bio-Medical Sciences, European University of Madrid, Madrid, Spain
- Department of Pediatrics, Puerta de Hierro-Majadahonda University Hospital, 28221 Madrid, Spain
- Departments of Pediatrics and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - University of Washington Center for Rare Disease Research
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
- Division of Neurology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Departments of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
- Division of Neurology, Department of Pediatrics, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Sultanate of Oman
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
- Department of Basic Bio-Medical Sciences, European University of Madrid, Madrid, Spain
- Department of Pediatrics, Puerta de Hierro-Majadahonda University Hospital, 28221 Madrid, Spain
- Departments of Pediatrics and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
| | - Michael J. Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| |
Collapse
|
5
|
Mulvany-Robbins B, Putko B, Schmitt L, Oudit G, Phan C, Beecher G. Novel p.Asp27Glu ACTA1 variant features congenital myopathy with finger flexor weakness, cardiomyopathy, and cardiac conduction defects. Neuromuscul Disord 2023; 33:546-550. [PMID: 37315422 DOI: 10.1016/j.nmd.2023.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
Pathogenic variants in the skeletal muscle α-actin 1 gene (ACTA1) cause a spectrum of myopathies with clinical and myopathological diversity. Clinical presentations occur from the prenatal period to adulthood, commonly with proximal-predominant weakness and rarely preferential distal weakness. Myopathological findings are wide-ranging, with nemaline rods being most frequent. Associated cardiomyopathy is rare and conduction defects are not reported. We describe a family with congenital myopathy with prominent finger flexor weakness and cardiomyopathy with cardiac conduction defects. The proband, a 48-year-old Caucasian male, his 73-year-old mother, 41-year-old sister, and 19-year-old nephew presented with prominent finger flexor weakness on a background of neonatal hypotonia and delayed motor milestones. All had progressive cardiomyopathy with systolic dysfunction and/or left ventricular dilation. The proband and sister had intraventricular conduction delay and left anterior fascicular block, respectively. The mother had atrial fibrillation. Muscle biopsy in the proband and sister demonstrated congenital fiber-type disproportion and rare nemaline rods in the proband. A novel dominant variant in ACTA1 (c.81C>A, p.Asp27Glu) segregated within the family. This family expands the genotypic and phenotypic spectrum of ACTA1-related myopathy, highlighting preferential finger flexor involvement with cardiomyopathy and conduction disease. We emphasize early and ongoing cardiac surveillance in ACTA1-related myopathy.
Collapse
Affiliation(s)
- Bridget Mulvany-Robbins
- Division of Neurology, Department of Medicine, University of Alberta, 7-125 Clinical Sciences Building 11350 83rd Avenue NW, Edmonton, AB, Canada T6G 2G3
| | - Brendan Putko
- Division of Neurology, Department of Medicine, University of Alberta, 7-125 Clinical Sciences Building 11350 83rd Avenue NW, Edmonton, AB, Canada T6G 2G3
| | - Laura Schmitt
- Section of Neuropathology, Department of Laboratory Medicine and Pathology, University of Alberta, 8440 112St NW, Edmonton, AB, Canada T6G 2B7
| | - Gavin Oudit
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Health Institute, 11220 83 Ave NW, Edmonton, AB T6G 2B7
| | - Cecile Phan
- Division of Neurology, Department of Medicine, University of Alberta, 7-125 Clinical Sciences Building 11350 83rd Avenue NW, Edmonton, AB, Canada T6G 2G3
| | - Grayson Beecher
- Division of Neurology, Department of Medicine, University of Alberta, 7-125 Clinical Sciences Building 11350 83rd Avenue NW, Edmonton, AB, Canada T6G 2G3.
| |
Collapse
|
6
|
Chong JX, Childers MC, Marvin CT, Marcello AJ, Gonorazky H, Hazrati LN, Dowling JJ, Amrani FA, Alanay Y, Nieto Y, Gabriel MÁM, Aylsworth AS, Buckingham KJ, Shively KM, Sommers O, Anderson K, Regnier M, Bamshad MJ. Variants in ACTC1 underlie distal arthrogryposis accompanied by congenital heart defects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.07.23286862. [PMID: 36945405 PMCID: PMC10029015 DOI: 10.1101/2023.03.07.23286862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Contraction of the human sarcomere is the result of interactions between myosin cross-bridges and actin filaments. Pathogenic variants in genes such as MYH7 , TPM1 , and TNNI3 that encode parts of the cardiac sarcomere cause muscle diseases that affect the heart, such as dilated cardiomyopathy and hypertrophic cardiomyopathy. In contrast, pathogenic variants in homologous genes MYH2 , TPM2 , and TNNI2 , that encode parts of the skeletal muscle sarcomere, cause muscle diseases affecting skeletal muscle, such as the distal arthrogryposis (DA) syndromes and skeletal myopathies. To date, there have been few reports of genes (e.g., MYH7 ) encoding sarcomeric proteins in which the same pathogenic variant affects both skeletal and cardiac muscle. Moreover, none of the known genes underlying DA have been found to contain mutations that also cause cardiac abnormalities. We report five families with DA due to heterozygous missense variants in the gene actin, alpha, cardiac muscle 1 ( ACTC1 ). ACTC1 encodes a highly conserved actin that binds to myosin in both cardiac and skeletal muscle. Mutations in ACTC1 have previously been found to underlie atrial septal defect, dilated cardiomyopathy, hypertrophic cardiomyopathy, and left ventricular noncompaction. Our discovery delineates a new DA condition due to mutations in ACTC1 and suggests that some functions of actin, alpha, cardiac muscle 1 are shared in cardiac and skeletal muscle.
Collapse
Affiliation(s)
- Jessica X. Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute, Seattle, WA 98195, USA
| | - Matthew Carter Childers
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
| | - Colby T. Marvin
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Anthony J. Marcello
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Hernan Gonorazky
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada ONM5G 1X8
| | - Lili-Naz Hazrati
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada ONM5G 1X8
| | - James J. Dowling
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada ONM5G 1X8
- Departments of Paediatrics and Molecular Genetics, University of Toronto, Ontario, Canada M5G 0A4
| | - Fatema Al Amrani
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada ONM5G 1X8
- Division of Neurology, Department of Pediatrics, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Yasemin Alanay
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, 34752, Turkey
| | - Yolanda Nieto
- Department of Basic Bio-Medical Sciences, European University of Madrid, Madrid, Spain
| | - Miguel Á Marín Gabriel
- Department of Pediatrics, Puerta de Hierro-Majadahonda University Hospital, 28221 Madrid, Spain
| | - Arthur S. Aylsworth
- Departments of Pediatrics and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kati J. Buckingham
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Kathryn M. Shively
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Olivia Sommers
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Kailyn Anderson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | | | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
| | - Michael J. Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| |
Collapse
|
7
|
Rossi D, Catallo MR, Pierantozzi E, Sorrentino V. Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. J Gen Physiol 2022; 154:e202213115. [PMID: 35980353 PMCID: PMC9391951 DOI: 10.1085/jgp.202213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|