Sanders JE, Stiles CE, Hayes CL. Tissue response to single-polymer fibers of varying diameters: evaluation of fibrous encapsulation and macrophage density.
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2000;
52:231-7. [PMID:
10906696 DOI:
10.1002/1097-4636(200010)52:1<231::aid-jbm29>3.0.co;2-e]
[Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An in vivo study was conducted to assess the sensitivity of fibrous capsule thickness and macrophage density to polymer fiber diameter. Single polypropylene fibers of diameters ranging from 2.1 to 26.7 microm were implanted in the subcutaneous dorsum of Sprague-Dawley rats. Results at 5 weeks demonstrated reduced fibrous capsule thickness for small fibers. Capsule thickness was 0.6 (+/-1.8) microm, 11.7 (+/-12.0) microm, 20.3 (+/-11.6) microm, and 25.5 (+/-10.0) microm for fibers in the ranges of 2.1 to 5.9, 6.5 to 10.6, 11.1 to 15.8, and 16.7 to 26.7 microm, respectively. Fibers very near to blood vessels had smaller capsules than did those with local vasculature further away. The macrophage density in tissue with fiber diameters 2.1 to 5.9 microm (23.03 +/- 8.67%) was comparable to that of unoperated contralateral control skin (18.72+/-10.06%). For fibers with diameters in the ranges of 6.5 to 10.6, 11.1 to 15.8, and 16.7 to 26.7 microm, macrophage densities were 33.90+/-13.08%, 34.40+/-15.77%, and 41.68+/-13.98%, respectively, all of which were significantly larger (p<0.002) than that for the control. The reduced fibrous capsule thickness and macrophage density for small fibers (<6 microm) compared with large fibers could be due to the reduced cell-material contact surface area or to a curvature threshold effect that triggers cell signaling. A next step will be to extend the analysis to meshes to evaluate fiber-spacing effects on small-fiber biomaterials.
Collapse